

Geotechnical Report

Metro South East Region

Geotechnical Study- Koo Wee Rup Corridor between Pakenham Bypass and South Gippsland Highway

Report No: File GE042-21 February 2008

12 Lakeside Drive Burwood East Victoria 3151

Disclaimer

This document has been prepared in response to the client's brief with all due care and skill by competent personnel, as defined in GeoPave's quality system, and is a true record of the investigations and tests conducted at the date and time conducted. This document is not intended to be a complete and exhaustive statement of all conditions present.

This document has been prepared solely for the specific client, for this specific project and for a specific use in response to the client's brief. The use of this document is not appropriate where there has been any change in the nature of the project or its intended use, or in the site resulting from natural or man-made events or the passing of time or in the specific needs of the user.

This document should only be used as a whole. This document has been prepared for interpretation and use as a single entity, with qualifications being made where appropriate on information presented herein. No responsibility or liability is accepted where any part of the document is used in isolation, and without consideration of the total document.

Surface and sub-surface conditions are variable. Where investigations have been conducted, these investigations relate only to the specific sites tested as shown in this document. While due care and judgement have been used, such investigations are far less exact than other design disciplines.

Sub-surface conditions, especially, may vary between test sites, at depths below which testing has been carried out, and with climatic conditions. Actual conditions may only be revealed during further work at the site. GeoPave recommends that further advice be obtained where any variances in conditions differ from those identified in this document.

Visual inspections. Where the client has requested visual inspections only without sub-surface investigations, sampling or testing, the information presented is considered to be a true record of visible conditions as observed by an experienced and competent person present at that time, date and under the climatic conditions experienced. A visual inspection cannot be deemed as a comprehensive review of existing conditions.

Testing of materials supplied by others. No responsibility or liability is accepted for the condition of materials or apparatus as received from the client, or for the suitability of the test method where it has been specified by the client.

Revision	Author		Reviewer
No.	Author	Name	Signature
0	V.Vijayakumar	A.Farr	
			r Issue by:
Name		Date	Signature
N.Fok		3/3/2008	

Document Control

Contact for additional assistance:

Adam Farr - Team Leader Geotechnical Investigation and Design

Telephone: +61 3 9881 8952

Facsimile: +61 3 9881 8900

E-mail: adam.farr@roads.vic.gov.au

© Copyright Technical Consulting All Rights Reserved

EXECUTIVE SUMMARY

This geotechnical report has been prepared to assist with the planning study for the duplication of Koo Wee Rup Road between the Pakenham Bypass and Manks Road and a bypass of Koo Wee Rup to the west of the Koo Wee Rup Township between Manks Road and the South Gippsland Highway.

A preliminary geotechnical investigation consisting of five (5) CPT tests was carried out at depths between 12.9m and 14.8m to give an indication of the ground conditions.

Due to the close vicinity of waterways and the presence of a high groundwater table in some CPT results, consideration should be given to undertake detailed groundwater and subsurface condition investigation to ensure their appropriate pavement design and pavement sub-grade condition can be ascertained. Due care must also be taken not to change the composition of the groundwater to below its existing beneficial use standards.

The proposed alignment traverses through low lying and poorly drained area, which may be subject to flooding. During construction the majority of the alignment would be constructed on fill with heights of up to 9m. The preliminary investigation results indicate that a very thick, soft to firm clay layer exists at depths approximately between 0.5m to 6.5m below the existing surface. Therefore, large subsurface settlement can be expected under the weight of the abutment fill. The use of geotextile/geogrid bore reinforcement may need to be considered to reduce settlements and construction time. The use of a suitable geotextile may need to be considered during wet periods, where clays may be exposed during construction.

Driven Reinforced Concrete (RC) and steel H pile foundations are both considered appropriate for bridge foundations.

This report provides preliminary geotechnical information for planning and more detailed geotechnical investigations will be required for this project.

TABLE OF CONTENTS

EXECUTIVE SUMMARY	
TABLE OF CONTENTS	.ii
1. INTRODUCTION	
2. SITE AND GEOLOGY	1
2.1 Site	1
2.2 Geology	
2.3 Geological Terminology Used	2
3. PRELIMINARY GEOTECHNICAL INVESTIGATION	
3.1 Cone Penetration Testing (CPT)	
4. GROUNDWATER	
4.1 Measured Groundwater Levels	
4.2 Groundwater Bores	
4.3 Groundwater Salinity	3
5. RAINFALL DATA	
6. PRELIMENTARY INVESTIGATION RESULTS	
6.1 Proposed areas of further Geotechnical Investigation	
7. DISCUSSION	-
7.1 General	-
7.2 Road Fill Embankment	-
7.2.1. General Description	
7.2.2. General Risk / Construction Issues of Fill	
7.3 Bridge and Culvert Foundations	
7.3.1. Bridge	
7.3.2. Culverts	
7.4 Subgrade Properties and Pavement Materials	
7.4.1. Subgrade Properties	
7.4.2. Pavement Materials	
7.5 Availability of fill and Pavement Materials	
8. Recommendations	8

Appendices: A - G

- Appendix A Locality Plan
- Appendix B Long Section (Option 1)
- Appendix C Geological Map
- Appendix D Geotechnical Summary Drawing (No. 396223)
- Appendix E CPT Plots
- Appendix F F1 Plan Showing Groundwater Bores
 - F2 Electrical Conductivity (EC) & pH
 - F3 Standing Water Level (SWL)
- Appendix G Rainfall Data

1. INTRODUCTION

This report has been prepared by VicRoads Technical Consulting for Metropolitan South East Region to assist the Region with its planning study for the duplication of Koo Wee Rup Road between the Pakenham Bypass and Manks Road and a bypass of Koo Wee Rup to the west of the Koo Wee Rup township between Manks Road and the South Gippsland Highway.

The proposed bypass will cross the currently disused railway line south of Manks Road; Metropolitan South East Region is planning for a possible overpass over this railway line.

Both bypass options (1 and 2) will cross the disused railway line. Option 1 considerations include crossing the Bunyip River and the railway line to the adjacent drainage channels, while option 2 considerations include crossing the railway line and traversing along the west side of Bunyip River and the drains

A Locality Plan showing the area of the study and the bypass options considered are presented in Appendix A.

The preliminary geotechnical investigation consisted of five (5) Cone Penetration Tests (CPT's) carried out between the Pakenham Bypass and the South Gippsland Highway. Due to site access issues, the investigation did not cover the full length of the proposed alignment. The information contained in this report is intended to form the basis for proposals for more detailed geotechnical investigations to facilitate the selection of the alignment.

This report presents the results of the recent desk top study and preliminary geotechnical investigation carried out by VicRoads GeoPave in August 2007 and discusses the risks and construction issues.

2. SITE AND GEOLOGY

2.1 Site

The site is located between the Pakenham Bypass and the South Gippsland Highway in low lying and poorly drained areas consisting of alluvial and swamp deposits. The area of study is subject to flooding.

The study covered approximately 100m wide strip at both sides of the existing Koo Wee Rup Road and the area bounded by Bunyip River, South Gippsland Highway and Sybella Avenue. The study also covered a 600m wide strip along the north-west edge of Bunyip River.

The alignment corridor is traversed by drainage gullies which are likely to be filled with soft silts and clays. Springs and/or seepage zones are likely to be present in some areas. The near surface insitu clays are highly likely to be soft and of low bearing strength.

A long section is not available for the full length of the project. A preliminary long section provided by Metropolitan South East Region for the option of crossing the railway, Bunyip River and Drains (option 1) is presented in Appendix B.

Based on the topography, the formation of the proposed road would be likely to be constructed in fills.

2.2 Geology

Geological Survey of Victoria map – Cranbourne Sheet (No. 859 Zone 7), Australia 1:63,360 Series - shows that the area of study comprises of Recent Quaternary deposits of peaty clay, clay and silts and sands.

A geological map relevant to the bypass corridor is provided in Appendix C. The CPT locations are also shown on this map.

Cone Penetration Testing (CPT) confirmed the presence of Recent Quaternary deposits of clay, silts and sands. These materials may be highly moisture sensitive and contain shallow perched groundwater tables during the winter/spring period. As such, these materials can become untrafficable and unworkable in wet weather.

2.3 Geological Terminology Used

The soils in this document have been described using the methods and terminology presented in Australian Standard 1726 - 1993, Geotechnical Site Investigations. Some additional terminology used is defined on Summary Drawing Nos. 396223 and is presented in Appendix D.

3. PRELIMINARY GEOTECHNICAL INVESTIGATION

3.1 Cone Penetration Testing (CPT)

A total of five (5) CPT's were carried out to depths between 12.9m and 14.8m. The CPT testing was carried out using VicRoads Penetration Testing Vehicle in accordance with AS 1289 F511-1977.

The CPT Testing was carried out at the following locations:

- CPT C07-039 was carried out in the road reserve at the north side of Ballarto Road. The CPT was terminated at 14.8m below the ground surface level.
- CPT C07-040 was carried out at the north side of Ellett Road in the road reserve. The CPT was terminated at 13.1m below the ground surface level.
- CPT C07-041 was carried out at approximately 10m south east of Bunyip River (McDonalds Drain). The CPT was terminated at 12.9m below the ground surface level.
- CPT C07-042 was carried out at the north side of Railway Road in the road reserve. The CPT was terminated at 13.55m below the ground surface level.
- CPT C07-043 was carried out in the road reserve at the south east side of Rossiter Road. The CPT was terminated at 13.75m below the ground surface level.

The CPT locations are shown in the Geological Map provided in Appendix C. An indication of the bypass alignment options considered is also shown on this map.

The CPT plots along with the inferred soil types and properties are presented in Appendix E.

In all CPT test sites, groundwater measurements were attempted in the probe holes following testing. Where the groundwater level could be effectively measured, the water level is shown on the CPT plots.

4. GROUNDWATER

4.1 Measured Groundwater Levels

Groundwater levels, where encountered during the course of the investigation, have been recorded on the CPT plots.

The measured water level below the existing ground surface level on 21 August 2007 was 9.9m in CPTs C07-041 and C07-042 while the measured water level in CPT C07-043 was 1.75m.

The water level could not be measured in CPT's C07-039 and C07-040 due to caving in of the CPT holes at 2.0m and 0.5m below the ground surface level, respectively.

4.2 Groundwater Bores

A search of existing groundwater bores that fall within the proposed corridor was undertaken using the Department of Sustainability and Environment's (DSE) website (http://nremapsc.nre.vic.gov.au).

A plan showing the groundwater bore locations is presented in Appendix F1. The boreholes which have relevant information to this investigation have been highlighted.

Due to the presence of groundwater and possibly perched water tables in the area care must be taken not to change the composition of these water sources, therefore the Electrical Conductivity (EC) levels need to be monitored to ensure that the waters are within the relevant guidelines. EC is also a measure of Total Dissolved Solids (TDS), multiplying EC values by a factor of 0.6 will result in its corresponding TDS value. TDS is used in the State Environmental Protection Policy – Groundwaters of Victoria to determine appropriate levels for various uses of groundwater.

Information regarding EC, pH and corresponding depths are provided in Appendix F2. The implication of these results will be discussed later in Section 4.3 of the report.

Standing Water Levels (SWL) vary between ground level (0 m) and 10.7m below ground level. The water level recorded at ground surface was in borehole 71794 located north of Boundary Drain Road on 12 January 1984. The Standing Water Levels (SWL) are presented in Appendix F3.

4.3 Groundwater Salinity

Based on the information from the Groundwater Bores the groundwater salinity, as measured by Electrical Conductivity (EC) varies between 440 to 7007 μ S/cm and pH values vary between 4.6 and 8.5. The EC values of water samples from Bore 71184 vary between 420 and 567 μ S/cm. The remaining EC values vary between 1648 and 7007. The pH and the EC values are from water samples obtained from 13.5m below the ground surface level.

EC values greater than 3500 μ S/cm may have corrosive potential and water sampling and testing should be carried out for structure foundations. As there are no cut areas water salinity is unlikely to cause any discharging issues. However, water sampling and testing should be carried out at grade in sections of the road which are on shallow fill, if groundwater is encountered during test pit investigation. Standpipes should be installed at structure foundation locations for study of groundwater quality and water level.

5. RAINFALL DATA

A summary of rainfall data recorded from Koo Wee Rup between 1996 and 2007 is provided in Appendix G. This information should be given consideration with standpipe monitoring to assess the fluctuation of groundwater level and to assist with construction planning.

6. PRELIMENTARY INVESTIGATION RESULTS

CPT C07-039 carried out on the north side of Ballarto Road encountered clay varying from soft to very stiff from ground level (0m) to approximately 6.7m below ground level, and very stiff sandy clay/clay from 6.7- 14.8 m below ground level. The groundwater level could not be measured due to CPT C07-039 caving in at 2.0m.

CPT C07-040 carried out on the north side of Ellett Road encountered very loose silty sand from ground level (0m) to approximately 0.4m below ground level. Clays varying from soft to very stiff were found from approximately 0.4- 13.1m below ground level with an overlay of sandy material between 8.5-9.5m below ground level. The groundwater level could not be measured due to CPT C07-040 caving in at 0.5m.

CPT C07-043 was carried out in the road reserve at the south eastern side of Rossiter Road to a depth of 13.75m below the ground surface level and encountered the following material. From ground level (0m) to 0.3m loose silty sand/sand fill, from 0.3-5.4m below ground level firm to stiff clay from 5.4-7.4m below ground level loose to medium dense silty sand/sand, from 7.4-13.75m very stiff to hard clay with a section of loose sand at approximately 11.8m below ground level. The groundwater level was at 1.75m below the ground surface level.

CPT C07-041 carried out approximately 10m south east of Bunyip River (McDonalds Drain) to a depth of 12.9m, encountered the following material. From ground level (0m) to 4.5m below ground level, clays varying from firm to very stiff with loose silty sand sections at 0-0.9m and 1.4-1.9m. From 4.5-12.9m below ground level the material is firm to hard sandy clay to clay with a section of stiff to very stiff clay from 6.7-8.5m. The groundwater level was 9.5m below the ground surface level.

CPT C07-042 carried out at the north side of the Railway Road to a depth of 13.55m encountered the following material. From ground level (0m) to approximately 0.3m below ground level very loose sand fill, from 0.3-2.2m below ground level firm to very stiff clay, from 2.2-10.8m below ground level stiff to very stiff clay, from 10.8-12.1m loose to medium dense sand, from 12.1-13.55m below ground level stiff to very stiff sandy clay/clay. The groundwater level was 9.9m below the ground surface level.

6.1 Proposed areas of further Geotechnical Investigation

This preliminary investigation has highlighted the need for the following more extensive investigations.

- Approximately 20m deep boreholes with Standard Penetration Test (SPT) and undisturbed sampling in soft to firm clays for laboratory testing to determine strength parameters for bridge foundation design, including assessment of abutment fill stability and settlement as appropriate.
- Approximately 7.5m deep boreholes with Standard Penetration Test (SPT) and undisturbed sampling in soft to firm clays for laboratory testing to determine strength parameters for large culverts foundation design, including assessment of approach fill stability and settlement as appropriate. Alternatively Cone Penetration Testing (CPT) could be used.
- Boreholes/standpipes in high fill areas and structure foundation locations to assess groundwater levels and the effect on consolidation of foundation material.
- Shallow soil investigations consisting of backhoe test pits to a depth of approximately 2m with Dynamic Cone Penetration Testing (DCPT's) at 150 to 300m intervals to assess stripping depths beneath fill areas and at grade areas. Obtaining bulk soil samples for classification, grading and California Bearing Ratio (CBR), especially in at grade or low fill areas to determine subgrade conditions. Swell and shrinkage testing required to be carried out to assess the moisture sensitivity and swell characteristics of peat and organic clays.
- Water sampling and chemical analysis on groundwater sample

7. DISCUSSION

7.1 General

Preliminary investigation results and likely risks and construction issues are discussed below for the proposed road corridor between the Pakenham Bypass and the South Gippsland Highway.

7.2 Road Fill Embankment

7.2.1. General Description

The fill between the Pakenham Bypass and south of Manks Road (Ch. 1870m), south of Bunyip River (approx. chainage 2970m) and the South Gippsland Highway would be likely to vary up to approximately 2m. Due to the construction of the rail overpass, the embankment fill height rises to approximately 9m at the bridge abutment location

High groundwater or perched water tables could be present during wet periods in the year.

7.2.2. General Risk / Construction Issues of Fill

It is estimated that an immediate foundation settlement of 65mm and a total foundation settlement of 85mm may occur under a fill height of 2m. The estimation for immediate settlement under a fill height of 9m is 380mm and total settlement of 480mm.

Consideration should be given to the use of geotextile/geogrid base reinforcement with or without staged construction to reduce settlements and construction time and also to provide the required minimum batter slope for the embankment.

Bridge abutment fill settlements need to be monitored to confirm that anticipated settlements occur during construction for the particular construction method adopted and to ensure settlements do not exceed the limits specified in the Contract specification.

Survey pegs driven to refusal into fill across each abutment position may be used to monitor settlements. The surveys will require a stable bench mark and may be carried out at monthly intervals.

Construction options such as pre-loading or staged construction may be used to improve the ground conditions. With these options a minimum batter slopes of 1H: 1V to 1.5H: 1V may be required for fill heights up to 2m. For fill heights up to 9m batter slopes of 2H: 1V to 3H: 1V may be required. Detailed batter design should be subject to the results of further geotechnical investigations outlined in Section 6.1 of this report. However, if the groundwater is at a shallow depth, these methods may be ineffective. Perched water may be present during the wet periods of the year.

If construction proceeds during or after a wet period the exposed upper clay may become wet. Considerable softening of the clay is likely to occur therefore resulting in its removal. Use of a needle punched non-woven geotextile may be required at the base of the excavation for fill placement.

The top soil and grass root zone may vary up to 300mm. Therefore, approximately 300mm of surface materials may require removal.

7.3 Bridge and Culvert Foundations

7.3.1. Bridge

The preliminary investigation results indicate that a pile foundation could be required for bridge structure. Driven foundations are considered suitable for the bridge foundations

The pile capacity would be developed by a combination of shaft resistance and end bearing. As maximum fill height is approximately 9m, jointed piles will be required. RC piles may need to be driven through prebored holes through the abutment fills to prevent the formation of tension cracks in the abutment fills. Steel H piles may be driven without preboring. Longer steel piles may be required compared to RC piles if steel piles are founded in non-cohesive soils (sands and gravels) because of its small net end bearing area.

The strength of the soils may vary both vertically and horizontally. Therefore, Pile Driving Analyser (PDA) should be used to confirm driven pile capacities during installation. Provision for use of the PDA to assess pile capacities should be included in the bridge construction

specification.

The piles should be tested according to VicRoads Standard Specification to provide driving criteria for the remaining piles in the group. Any piles not achieving the required capacity should be retested after 24hours.

Detailed bridge foundation design should be subject to the results of further geotechnical investigations outlined in Section 6.1 of this report.

7.3.2. Culverts

Soft and loose materials require removal. Test pit and DCPT testing may be used for small culverts and pipes and CPT's or boreholes may be used for large culverts and culverts located under high fill to determine the subsurface conditions and the consistency of the materials.

A robust needle punched geotextile may be require at the base of excavations and compacted crushed rock or an open graded granular material may be required over the geotextile to the culvert invert level. The excavations may require dewatering.

During the construction of culverts the side batter slopes of 1.5H: 1V in soft to firm clays and 1H: 1V in stiff to very stiff clays may need to be adopted to a depth of 1.5m. Steeper batters require adequate support.

Detailed culvert foundation batter design should be subject to the results of further geotechnical investigations outlined in Section 6.1 of this report.

7.4 Subgrade Properties and Pavement Materials

7.4.1. Subgrade Properties

As mentioned in Section 1 of this report, the area of study is located in low lying and poorly drained areas consisting of alluvial and swamp deposits. The area is subject to flooding. The near surface in-situ clays are highly likely to be soft and of low bearing strength. In the low lying areas the soaked CBR is likely to vary between 1 and 3.

The majority of the alignment would be constructed on fill. A Design CBR (DCBR) of 3% may be obtainable, if the subgrade is improved through treatment or the placement of an overlying working platform to enable construction to proceed. The following measures may be adopted to facilitate construction on soft subgrade:

- Use of geotextiles.
- Draining and drying of the subgrade.
- Excavation and replacement of soft material with suitable material.
- Provision of a gravel or rock fill working platform covered by an impermeable layer.
- Stabilisation of the top layer of subgrade.
- Provision of a working platform of cement treated material.

Based on our knowledge of Pakenham Bypass test results on similar clay materials, insitu clays along the study corridor are most likely to be moderately expansive and therefore, a capping

layer would not be required (if the percentage swell is less than 2.5%). However, laboratory testing as outlined in Section 6.1 should be undertaken to determine soaked CBR and swell values for confirmation.

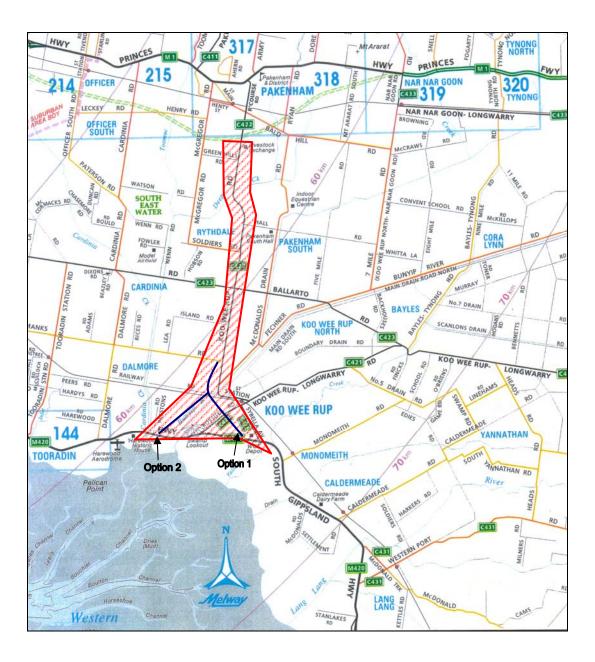
7.4.2. Pavement Materials

A flexible pavement is likely to consist of:

- Base Course Class 1 or Class 2 Crushed Rock with maximum nominal stone size of 20mm.
- Upper Subbase Class 3 Crushed Rock with maximum nominal stone size of 20mm.
- Lower Subbase Class 4 Crushed rock with maximum nominal stone size of 20 to 40mm.
- Type A Fill (CBR≥ 6%, Swell<1.5%) and may have a permeability requirement of 5×10⁻⁹ m/sec
- Layer thickness should equal or exceed the maximum nominal stone size by 2.5 times

Pavement design will be subject to the results of further geotechnical investigations outlined in Section 6.1 of this report.

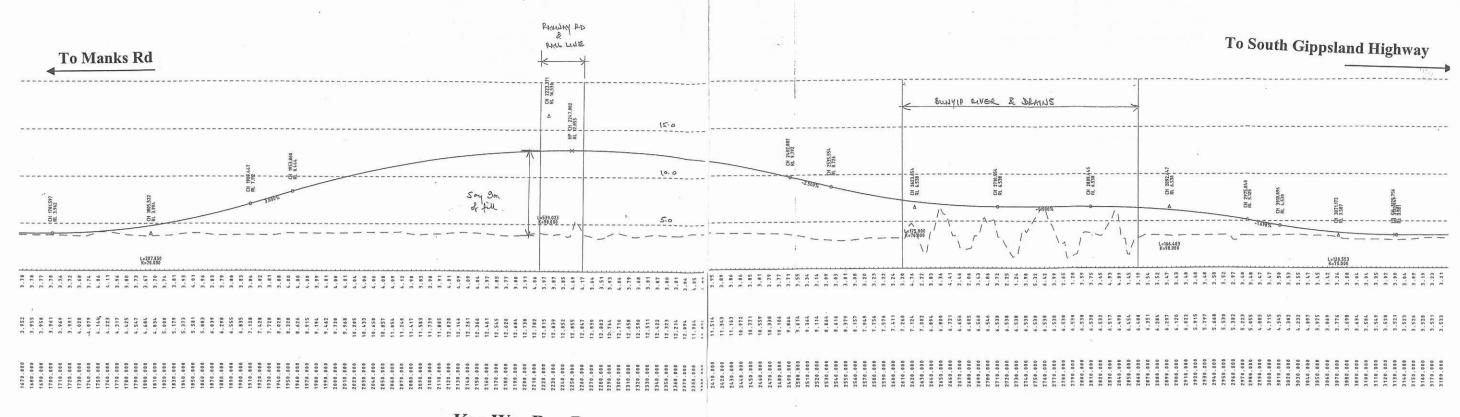
7.5 Availability of fill and Pavement Materials


Five quarries north of Princess Hwy at Tynong and Pakenham Upper are likely able to supply Type A, Type B materials and crushed rock.

8. **RECOMMENDATIONS**

- 1. The risks and construction issues highlighted in section 7 of this report be considered in the selection of the alignment options
- 2. Consideration be given to undertake a detailed geotechnical investigation as outlined in section 6.1 once the final alignment has been determined.

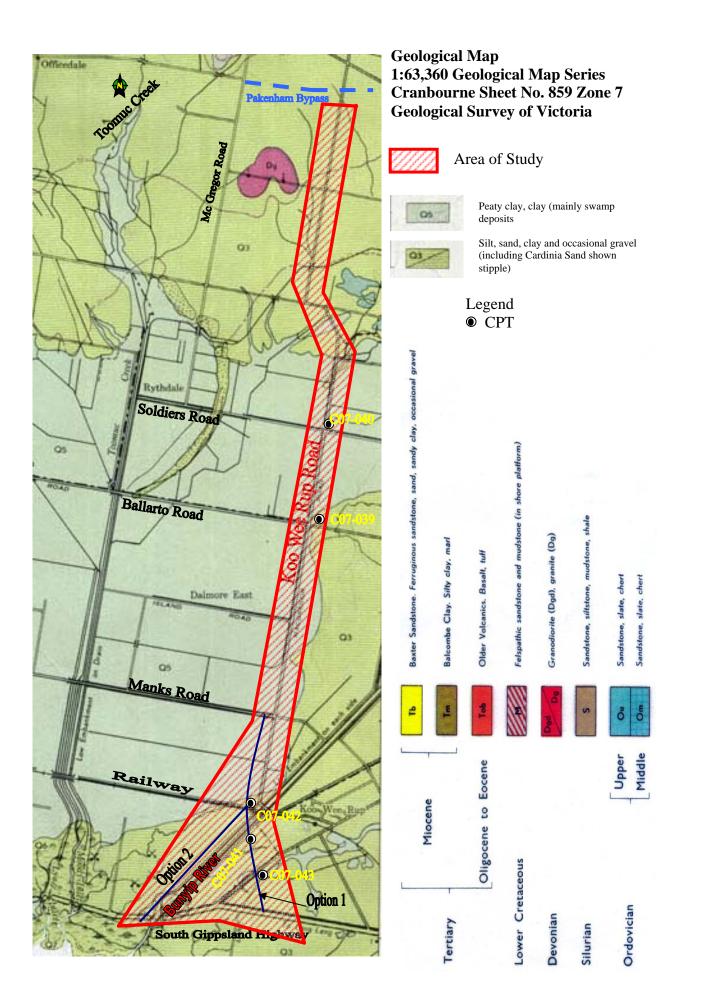
Locality Plan


Locality Plan (Not to Scale)

Area of Study

Appendix B

Long Section (Option 1)


Koo Wee Rup Bypass Option 1 Crossing Bunyip River

\$

SCALE: H 1:2000

Geological Map

Geotechnical Summary Drawing

TEST SITE SYMBOLS	FIELD TEST METHODS Standard Penetration Test (SPT)		Basic Soil	SOIL D	ESCR
	Refer AS 1289.6.3.1	Term S	Size range	Term Size range	Whe left
Auger hole (HA) hand auger (PA) power auger	The blow counts are recorded on the borehole log as one of: (i) 10,10,25 35 blows required for 300mm penetration after seating drive of 10 blows	BOULDERS COBBLES Coarse GRAVEL	63-200mm M	oarse SAND 0 6-2 36mm 1edium SAND 0 2-0.6mm ine SAND 0 075-0 2mm	
	 (ii) 30/110* 30 blows undertaken for 110mm penetration in seating drive (iii) 10, 30/110 30 blows undertaken for 110mm penetration after 	GRAVEL Medium GRAVEL	6-20mm S	GILT & CLAY iee A-Line chart	- se
Cored and/or washbored borehole (B)	seating drive of 10 blows (iv) 10, 20/10 20 blows undertaken for 10mm penetration (hammer before test ended due to hammer bounce after	Fine GRAVEL	2.36-6mm s		Coarse
	bouncing) seating drive of 10 blows The penetration resistance is recorded on the borehole log as			nic sands, organic silts, Size range varies	
Inclined borehole	one of: (i) N25 25 blows required for 300mm penetration after seating drive	Decemintiv	o Torma fo	n Matarial Dropantian	- vtc
 Friction cone penetration test (C) (suffix 'P' for piezo-friction cone penetration test) 	(ii) N<1 Shoe penetrates 450mm under rod or rod and hammer weight	Descriptive	Coarse graine	r Material Proportion	(amonents
Δ Dynamic cone penetration test (DCPT)	(iii) N>60 More than 60 blows required to penetrate 300mm after seating drive	% Fines ≤ 5	Omit.or us	Modifier se 'trace'	
Test pit (TP) Dozer pit (DP)	Cone Penetration Test (CPT) Refer AS 1289651	> 5 ≤ 12	applicable		به ت ل
× Pavement Dipping (PD)	Where soil descriptions are shown on the CPT plots have been inferred from the measured resistances and cannot be guaranteed. Tenderers are advised to draw their own	> 12	Prefix soil applicable	as 'silty/clayey' as	
	conclusions as to the character of the materials penetrated		Fine graine		Organic
	Dynamic Cone Penetration Test (DCPT) Refer AS 1289632	% Coarse ≤ 15	Omit, or us		
SYMBOLS USED ON	GRAPHIC SYMBOLS	>15 ≤ 30 >30	applicable	as 'sandy∕qravelly' as	60
BOREHOLE LOGS	FOR SOIL AND ROCK	Consist	tency - Nor	n-Cohesive Soils	50
		Term	SPT N Va	alue Relative Density (%)	
	Fill Mudstone & Slate, phyllite claystone)	Very loose Loose Medium dense	$ < 4 \\ > 4 \le 7 \\ > 10 \le 3$		(I)
Undisturbed Sample	Cobbles Boulders Shale Gneiss	Dense Very dense	> 30 ≤ > 50	50 >65≤85	NDE NDE NDE
Continuous Sample	Gravel Sandstone Hornfels				→ 20 H J I C I ≺ 10
	Sand Conglomerate Quartzite	Cons	sistency - C	Cohesive Soils	LS 10
	Silt Limestone Breccia Clay or undifferentiated soil Tuff Scoria Crushed or shear zone	Terms	Jndrained shear F strength (kPa)	Field Guide to Consistency	0
		Very soft		des between fingers when eezed in hand	
value			fing	i be moulded by light jer pressure	Dr
	grained igneous		fing >50 ≤100 Canr	ger pressure not be moulded by fingers	Mo
			>100 ≤200 (an >200 (an	be indented by thumb nail be indented with difficulty	, W
→ Water loss during drilling N25 Standard Penetration Test (SPT) and N value	Coal Coal Cemented soil PILE No. CHEXKED Coal Coal Coal Coal Cemented soil Cemented soil Cemented soil Cemented soil Cemented soil Cemented soil Cemented soil CHEXKED CHEXK	Very soft Soft > Firm > Stiff > Very stiff > Hard	≤ 12 Exua squi >12 ≤ 25 Can fing >25 ≤50 Can fing >50 ≤100 Can Can Can >200 Can by f 200 Can	eezed in hand i be moulded by light ger pressure be moulded by strong ger pressure not be moulded by fingers be indented by thumb be indented by thumb nail	,

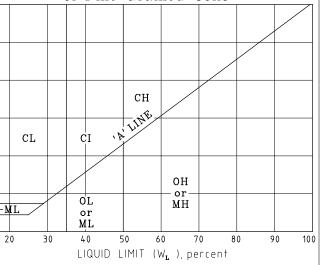
N. FOK

GROUP MANAGE

50 MILLIMETRES ON ORIGINAL DRAWING

VICROADS DESIGN EAST (FOR DETAILED DESCRIPTION SEE AUSTRALIAN STANDARD AS 1726)

CONTRACT N


PTION

Classification Symbols

e laboratory tests are not used to classify soils symbols are shown in brackets e.g. (CH)

	Description name	Letter Symbol
Main terms	GRAVEL SAND	G S
Qualifying terms	Well graded Poorly graded	W P
Main terms	SILT CLAY	M C
Qualifying terms	Of low plasticity Of medium plasticity Of high plasticity	L I H
Main terms	PEAT ORGANICS	P _t O

A-Line Chart for Classification of Fine Grained Soils

Soil Moisture

erm	Field Guide to Soil Moisture
(D) t (M)	Cohesive soils, hard or friable or powdery, well dry of plastic limit Granular soil, cohesionless and free-running Soil feels cool, darkened in colour. Cohesive soil can be moulded.
(W)	Granular soil tends to cehere Soil feels cool, darken in colour. Cohesive soil usually weaken and free water forms on hands when handling Granular soil tends to cohere

GEOTECH	HNICAL	INVEST	IGATIO	DN
aterials	Project : (Geology	File :	396223v8.dgn
-	SHEET	1 _{of} 2	DRAWING NO.	396223
	-			

ROCK DESCRIPTION

Rock Material

Strength

Letter Symbol	Term	Point Load I _s sø Index (MPa)
EL VL M H VH EH	Extremely low Very low Low Medium High Very high Extremely high	$ \le 0 \ 03 > 0 \ 03 \le 0 \ 1 > 0 \ 1 \ \le 0 \ 3 > 0 \ 3 \ \le 1 \ 0 > 1 \ 0 \ \le 3 \ 0 > 3 \ 0 \ \le 10 > 10 > 10 $

The fracture state is described by the Rock Quality Designation (RQD)

Core Fractures

RQD (%) = $\frac{\text{Sum of core pieces} > 100 \text{ mm in length(mm)}}{\text{Mom of core pieces} \times 100 \text{ mm}} \times 100 \text{ mm}$ Length of core run (mm)

NOTES: 1. Breaks produced by drilling or handling are ignored in the summation. 2. Length of core run includes any core losses.

Discontinuity Spacing in One Dimension

(e.g. joints, shear zones etc.)

Rock Mass

Spacing of Planar Structures (e.g. bedding, laminations etc)

Term	Spacing
Very thick Thick	> 2m > 600mm ≤ 2m
Medium > All Rock Types Thin	> 200mm ≤ 600mm > 60mm ≤ 200mm
Very Thin J Thickly laminated (Sedimentary) Narrow (Igneous & Metamorphic)	>20mm ≤60mm >6mm ≤20mm
Thinly laminated (Sedimentary) Very narrow (Igneous & Metamorphic)	≤6mm

Letter Symbol	Term	Spacing		
VW	Very widely spaced	> 2m		
W	Widely spaced	$>$ 600mm \leq 2m		
М	Medium spaced	> 200mm ≤ 600mm		
C	Closely spaced	$>$ 60mm \leq 200mm		
VC	Very closely spaced	> 20 mm ≤ 60 mm		
EC	Extremely closely spaced	≤ 20mm		

Planar Structures and Discontinuities

Symbol	Term
S o S v S н	Bedding plane joint Sub-vertical joint Sub-horizontal joint
eg 30/145, 45/063	Angle of dip/dip direction relative to magnetic north (in degrees)

First term	Spacing
Very large	> 2m
Large Medium	> 600mm ≤ 2m > 200mm ≤ 600mm
Small	> 60mm ≤ 200mm
Very small	\leq 60mm
Second Term	Nature of Block
Blocky	Equidimensional
Tabular	Thickness much less than length or width
Columnar	Height much greater than cross section

Discontinuity Spacing in Three Dimensions

(not applicable to rock core)

Term	Symbol	
Residual Soil	RS	Soil c rock; fabri chang signif
Extremely weathered rock	XW	Rock has or co
Distinctly weathered rock	DW	Rock The be in leact depo
Slightly weathered rock	SW	Rock or n
Fresh rock	FR	Rock stai

Seismic Refraction Testing Symbols

T2 T2 V V	Seismic traverse location
T2 T2	Seismic traverse location
\frown	Interface plotted from a
	Interface plotted from p
1100 /2400	Seismic velocity interfac (Seismic velocity, m/sec.)
	Lateral velocity change

© 1991 ROADS CORPORATION THIS DOCUMENT IS COPYRIGHT. NO PART OF 11	LAST UPDATED PHOTOGRAPHIC REPRODUCTION		FILE No.	CHECKED J SLATER	4	SUMMARY OF GEOTECHNICAL TERMS AND SYMBOLS	GEOTECHNICAL INVESTIGATION				
CAN BE USED, AMENDED OR REPRODUCED BY ANY PROCESS WITHOUT WRITTEN PERMISSION	MARCH 2007	0 10 20 30 40 50	APPROVED	DRAWN		SHEET 2 of 2	Catalog	Materials	Project : Geology	File: $396224.dgn$	
OF GEOPAVE.		50 MILLIMETRES ON ORIGINAL DRAWING	N. FOK	VILRUADS DESIGN EASI	WATERIALS TECHNOLOGY V	(FOR DETAILED DESCRIPTION SEE AUSTRALIAN STANDARD AS 1726)	CONTRACT NO.	-	sheet 2 of 2	drawing no. 396224	

Rock Weathering

Description

developed on extremely weathered ; the mass structure and substancwe ric are no longer evident; there is a large nge in volume but the soil has not been ificantly transported

is weathered to such an extent that it 'soil' properties, i.e. either disintegrates can be remoulded, in water

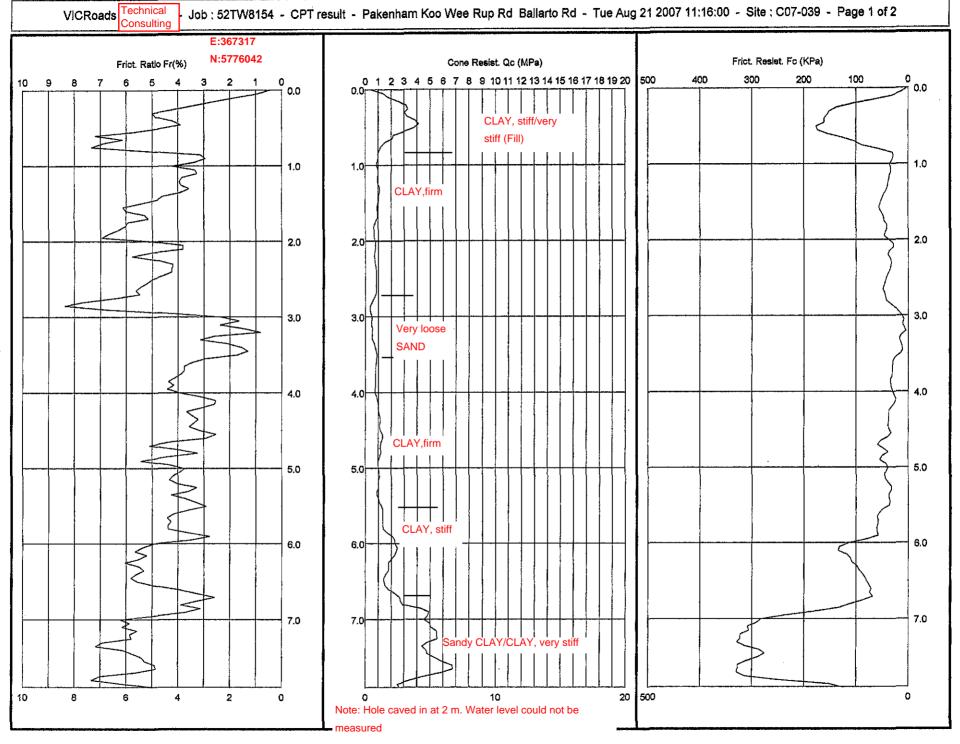
strength usually changed by weathering. rock may be highly discoloured, usually ironstaining. Porosity may be increased by ching, or may be decreased due to osition of weathering products in pores

ck is slightly discoloured but shows little no change of strength from fresh rock

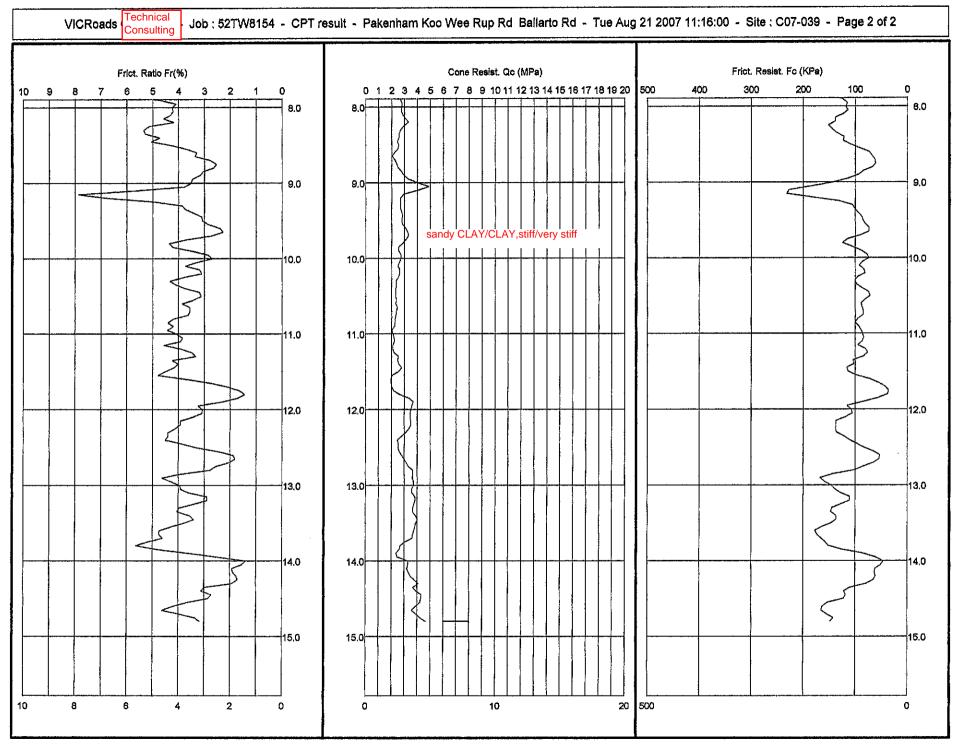
ck shows no sign of decomposition or lining

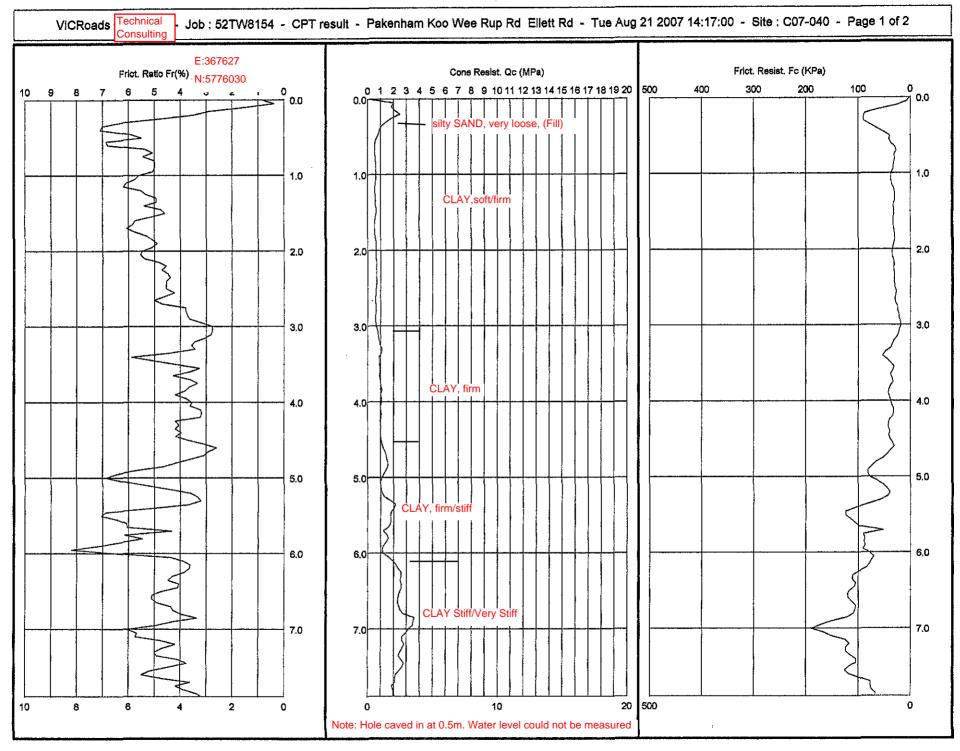
tion in section

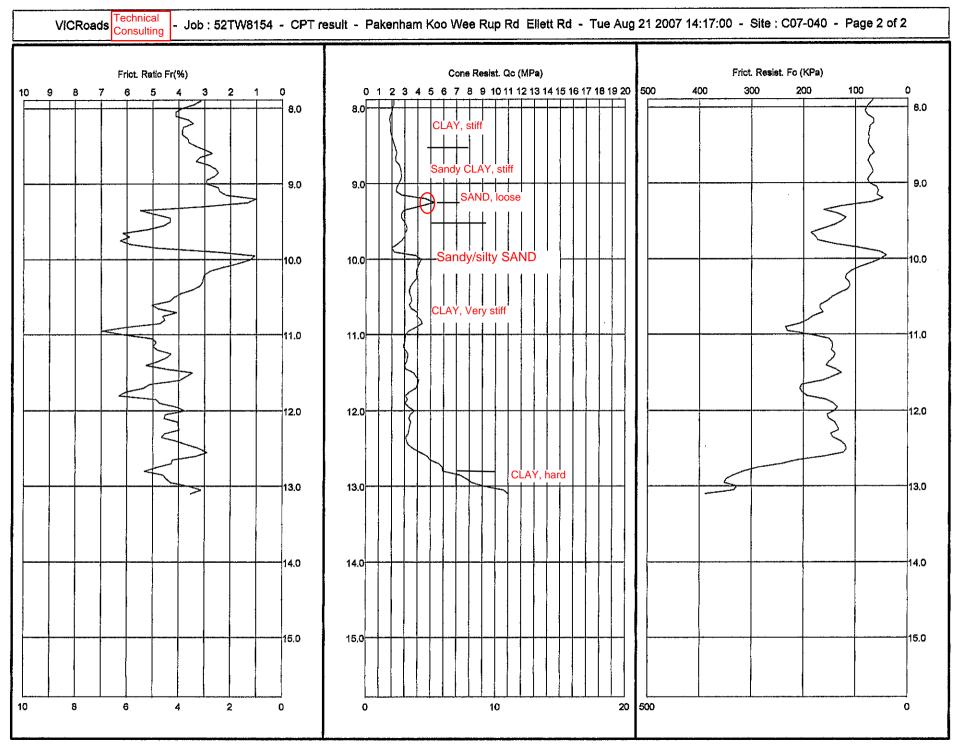
tion in plan

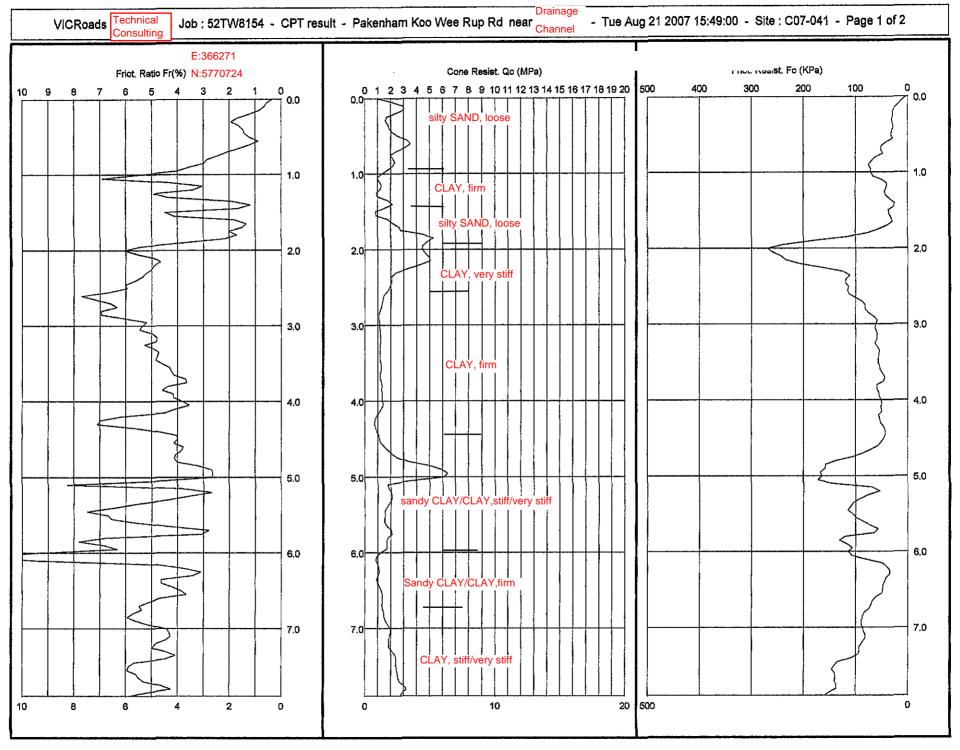

complete data coverage

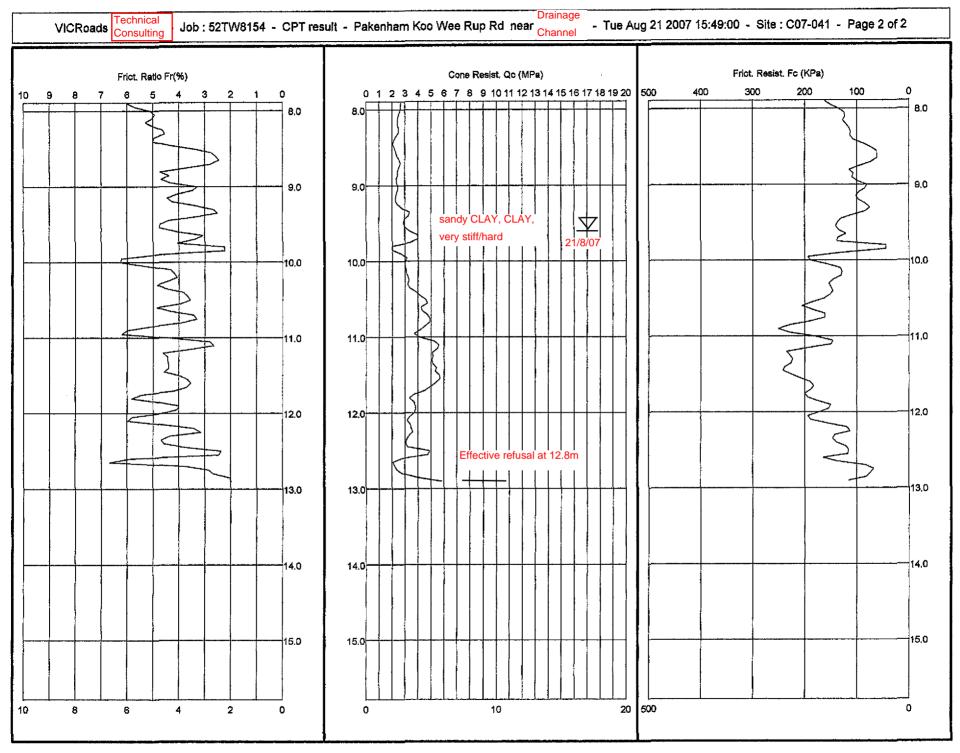
partial data coverage

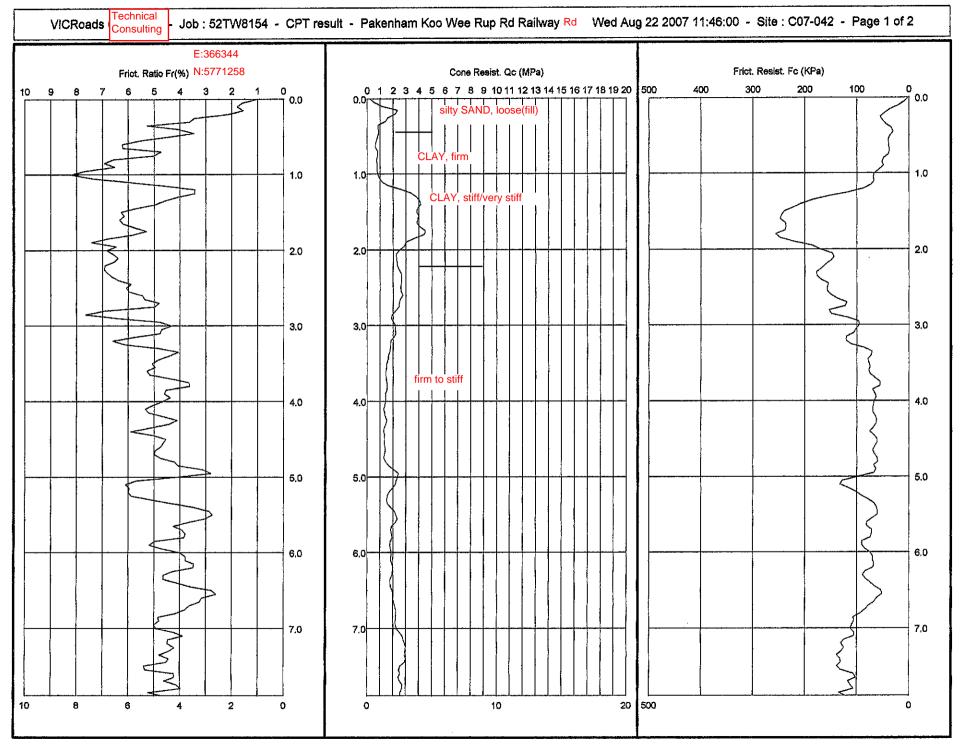

face ec.)

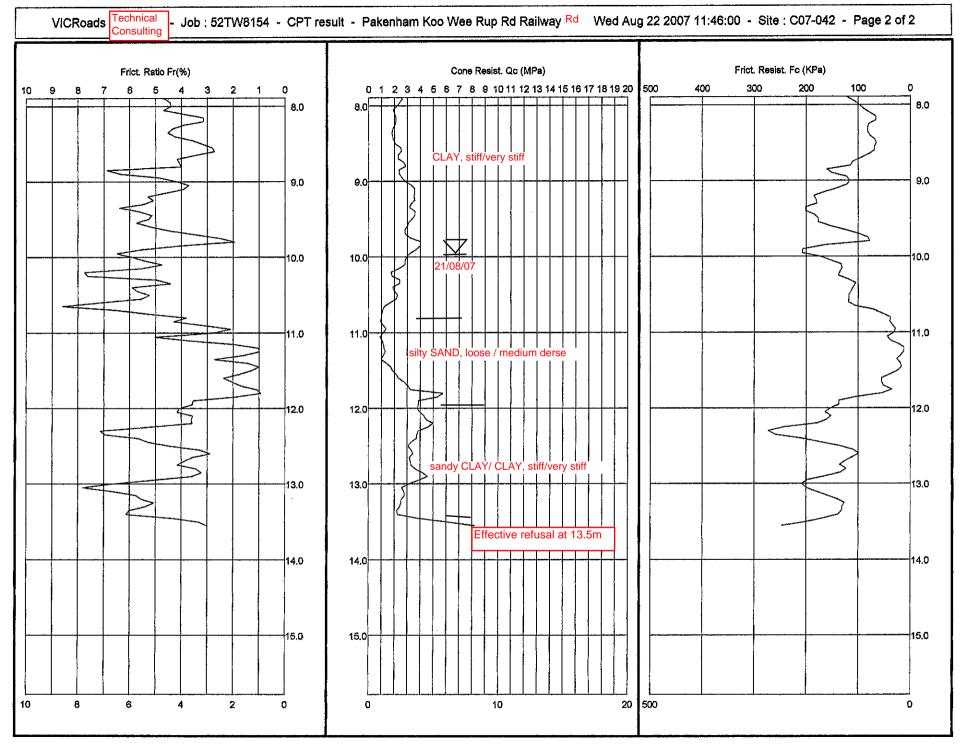


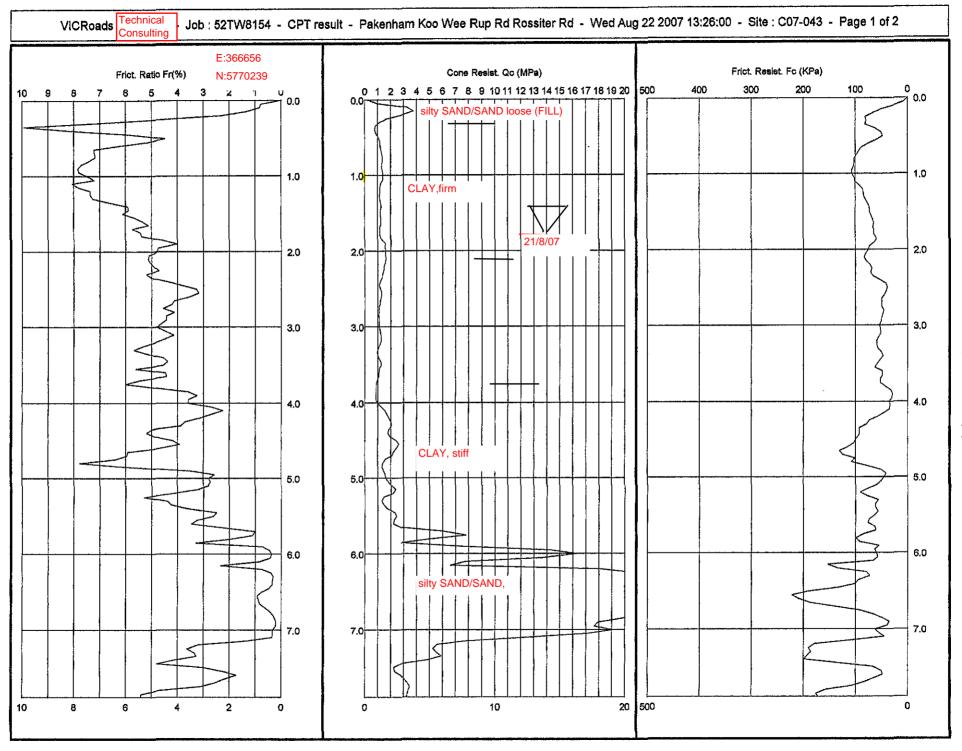

CPT plots

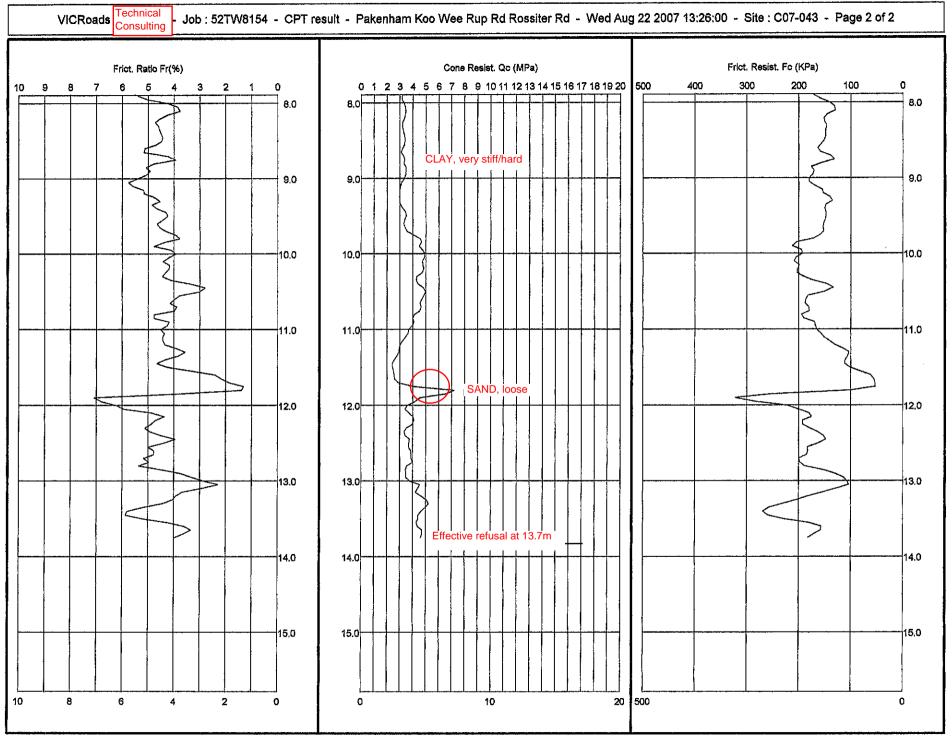


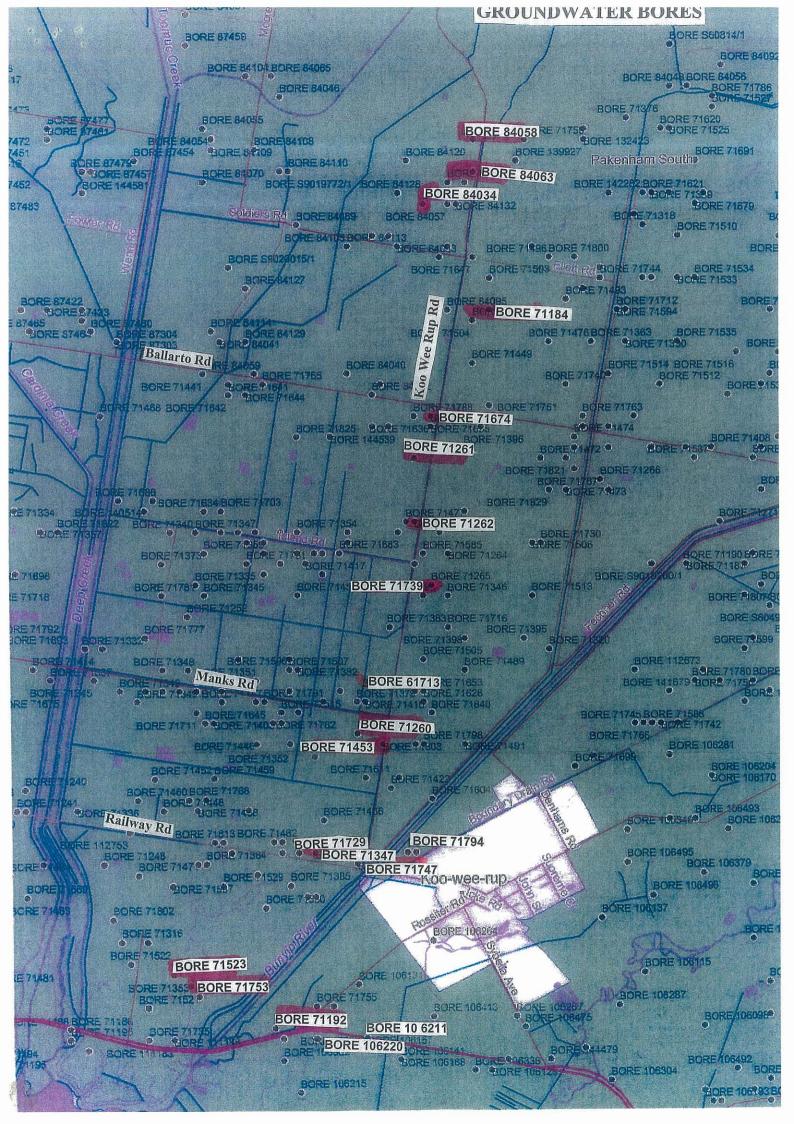

:











Appendix F1

Plan Showing Groundwater Bores

Appendix F2

Electrical Conductivity (EC) & pH

SITE NO	DITR NO			SAMPLE DATE		SAMPLE FROM	• •	SAMPLE TO	. ,		EC uS/cm
71184		2920		13/06/1967			21.33			8.1	
	3292000009			14/06/1967			21.33		46.9		
	3292000009			22/05/1967			22.25		24.1	7.8	
	3292000009			12/01/1971						8.5	1648
	3292000009			31/08/1977			20.72		36.6		560
	3292000009			3/05/1978						8.09	567
	3292000009			11/12/1978						8.12	
	3292000009			30/01/1979						7.35	
71184	3292000009			22/05/1979	BAL					8.2	3000
71184	3292000009	2920	31172	17/08/1983	NKN					7.5	570
71184	3292000009	2920	33111	13/12/1984	NKN					7.4	520
71184	3292000009	2920	43114	10/04/1985	BAL					8.1	500
71184	3292000009	2920	43133	11/09/1985	BAL					7.6	520
71184	3292000009	2920	43157	22/01/1986	BAL					7.8	440
71192		2920	9607	22/05/1975	BAL					7.64	2120
71192	3292000018	2920	9608	14/07/1975	BAL					7.7	2240
71192	3292000018	2920	9609	18/08/1975	BAL					8.44	1930
71192	3292000018	2920	9610	17/09/1975	BAL					7.59	2040
71192	3292000018	2920	9611	15/01/1976	BAL					7.88	2110
71192	3292000018	2920	9612	11/02/1976	BAL					7.81	2010
71192	3292000018	2920	9613	30/03/1976	BAL					7.81	2150
71192	3292000018	2920	9614	30/08/1977	FLO		42.67		123.4	8.24	1870
71192	3292000018	2920	9615	29/11/1977	FLO		42.67		123.4	8	1990
71192	3292000018	2920	9616	9/02/1978	FLO		42.67		123.4	7.92	2050
71192	3292000018	2920	9617	4/04/1978	FLO					7.5	2350
71192	3292000018	2920	9618	2/05/1978	FLO					8.13	2130
71192	3292000018	2920	9619	6/07/1978	FLO		42.67		123.4	8	2155
71192	3292000018	2920	9620	12/09/1978	FLO					8.2	2090
71192	3292000018	2920	51642	24/02/1982	FLO					7.65	2900
71192	3292000018	2920	30760	20/06/1983	NKN					7.8	2100
71192	3292000018	2920	31041	9/08/1983	NKN					7.5	2100
	3292000018			9/08/1983						7.5	
	3292000018						42.7		123.5	8	2200
	3292000018									8	1400
	3292000018			22/11/1988			42.7		123.4		2000

71192 3292000018	2920	0	23/11/1989 MON			
71192 3292000018	2920	42739	23/11/1989 NKN	42.7	123.4 7.2	2000
71192 3292000018	2920	71431	23/11/1989 NKN			2010
71192 3292000018	2920	44315	12/12/1990 PUM		7.6	2000
71192 3292000018	2920	45591	4/12/1991 NKN		7.4	2100
71192 3292000018	2920	48183	15/12/1992 PUM		7.2	2000
71192 3292000018	2920	54102	17/11/1993 PUM		7.3	2000
71192 3292000018	2920	0	17/11/1993 MON			
71192 3292000018	2920	63482	14/11/1994 PUM	42	123 7.2	2000
71192 3292000018	2920	0	15/11/1994 MON			
71192 3292000018	2920	63264	15/11/1994 NKN			1996
71192 3292000018	2920	81429	6/12/1995 PUM		7.3	2200
71192 3292000018	2920		15/12/2002 MON			
71192 3292000018	2920	1	15/12/2002 PUM		7.29	1740
71193	2920					
71246	2920	9637	4/10/1968 AIR	56.69	67.4 7.6	1550
71246 3292008024	2920	9638	24/01/1979 BAL		7.95	1950
71246 3292008024	2920	9639	8/06/1979 AIR		7.92	1925
71252	2920	9643	24/01/1979 BAL		7.9	1900
71256	2920					
71260	2920	9651	9/01/1969 BAL		8.4	2140
71260 3292008038	2920	9650	12/07/1967 PUM		8	
71261	2920	9652	12/07/1967 BAL	24.38	25.6 8.2	
71262	2920	9653	6/06/1962 FLO	9.14	12.2 7.5	
71263	2920	9654	11/07/1967 BAL	60.96	73.2 8.4	
71327	2920	9701	23/01/1979 BAL		7.95	1990
71327 3292008106	2920	9702	20/06/1979 AIR		7.92	2000
71330	2920	9705	24/01/1979 BAL		8.3	2040
71354	2920	9707	23/01/1979 BAL		8.45	2040
71355	2920	9708	20/02/1980 BAL		7.2	1850
71379	2920	9712	25/01/1979 BAL		7.7	1760
71379 3292008165	2920	9713	20/06/1979 BAL		6.9	1900
71611	2920	9722	3/11/1960 FLO		6.6	
71611 3292008398	2920	9721	1/06/1960 FLO		6.4	
71674	2920	9745	21/01/1971 FLO	0	32 7.7	1202
71681	2920	9757	4/02/1972 AIR	48.76	0 6.96	1483

71681 3292010011	2920	30999	6/07/1983 NKN		7.9	2000
71683	2920	9761	5/05/1972 FLO	37.49	43.6 5.84	1862
71686	2920	36788	18/07/1986 NKN		8.4	1800
71686 3292010016	2920	45510	8/11/1991 PUM		7.3	2000
71688	2920	9767	4/03/1973 BAL	57.91	62.8 7.6	1840
71690	2920	9769	29/06/1973 FLO		8.25	1820
71700	2920	9782	15/03/1974 AIR	42.67	48.2 7.39	1570
71702	2920	9784	2/08/1974 FLO	24.68	27.4 7.94	1615
71702 3292010032	2920	9785	2/08/1974 AIR	54.25	55.8 7.24	1620
71702 3292010032	2920	9786	2/08/1974 FLO	7.61	12.8 7.58	1640
71702 3292010032	2920	9787	2/08/1974 FLO	56.69	64.9 8.13	1970
71703	2920					
71710	2920	9790	25/01/1973 FLO	35.96	40.8 7.38	2080
71710 3292010040	2920	9791	31/01/1973 FLO	55.47	61.3 8.32	1930
71711	2920	9792	30/03/1973 FLO	46.93	51.8 6.71	1991
71713	2920					
71714	2920	9794	30/05/1975 AIR	29.26	31.7 8.2	2170
71716	2920	9796	25/01/1979 BAL		8	1810
71716 3292010046	2920	9797	19/06/1979 BAL		7.6	1860
71721	2920	9803	8/11/1976 FLO	35.35	37.2 7.11	2400
71722	2920	9804	7/02/1977 FLO	20.72	22.9 4.15	2740
71722 3292010054	2920	9805	7/02/1977 FLO	56.38	65.2 7.53	3740
71722 3292010054	2920	9806	7/02/1977 FLO	65.22	70.1 8.28	2120
71729	2920	9814	9/02/1978 AIR	49	53.7 6.79	1860
71733	2920	9817	5/10/1976 AIR	65.5	71.5 7.62	2140
71735	2920					
71737	2920	9819	6/10/1978 FLO	44	47 7.71	720
71739	2920	9821	17/07/1978 AIR	0	44.8 7.82	1850
71743	2920	9826	4/05/1979 AIR	27	28.3 8.5	1850
71747	2920	9830	4/05/1979 AIR	13.5	14.4 6.4	3080
71751	2920					
71753	2920	9835	3/03/1980 AIR	53	56.4 6.1	1500
71755	2920	9837	3/03/1980 AIR	28.5	30.5 6.95	1080
71765	2920	51655	26/03/1982 AIR	41	45.2 8.3	1740
71768	2920	9850	28/05/1981 AIR	54	56.4 8	1850
71776	2920	51659	28/05/1982 AIR	46.5	51 8.3	1900

71777		2920	51660	24/09/1982 AIR	46.94	50	8.3	1900
71798		2920	36000	7/05/1986 PUM	66.1	72.2	7.2	1800
71798	3292010132	2920	38112	8/04/1987 PUM	66.1	72.2	7.2	1800
71798	3292010132	2920	39391	24/11/1987 PUM	66.1	72.2	7.1	1800
71798	3292010132	2920	40526	12/05/1988 PUM	66.1	72.2	6.9	1800
71798	3292010132	2920	41320	16/11/1988 PUM	66.1	72.2	6.7	1800
71798	3292010132	2920	41926	10/04/1989 PUM	66.1	72.2	7.8	1800
71798	3292010132	2920	42784	4/12/1989 PUM	66.1	72.2	7.5	2100
71798	3292010132	2920	43418	11/04/1990 PUM	66.1	72.2	6.8	1900
71798	3292010132	2920	44156	14/11/1990 PUM	66.1	72.2	6.8	1900
71798	3292010132	2920	44890	10/04/1991 PUM			6.5	2300
71798	3292010132	2920	45511	1/11/1991 PUM	66.1	72.2	6.6	2100
71798	3292010132	2920	46071	11/02/1992 PUM	66.1	72.2	6.8	1900
71798	3292010132	2920	48419	14/12/1992 PUM	66.1	72.2	7.1	2000
71798	3292010132	2920	50065	1/04/1993 PUM	66.1	72.2	6.7	2000
71798	3292010132	2920	54176	9/12/1993 PUM	66.1	72.2	6.8	1800
71798	3292010132	2920	68313	18/11/1994 PUM	66.1	72.2	6.7	1800
71798	3292010132	2920	68363	3/04/1995 PUM	66.1	72.2	6.7	1900
71798	3292010132	2920	81409	13/12/1995 PUM			6.7	2000
71798	3292010132	2920	76457	29/03/1996 PUM			6.6	1800
71803		2920	33851	9/02/1985 BAL	39	42.6	7.4	2700
71811		2920	35166	22/11/1985 BAL	41	44.8	7.5	2000
71813		2920	35889	25/02/1986 NKN			8.2	1900
71817		2920	37558	4/12/1986 NKN			8.2	2600
71820		2920	38556	14/05/1987 NKN			8.2	2100
71825		2920	41025	8/07/1988 NKN			8	1800
71840		2920	44603	14/02/1991 BAL	39	42.5	7.7	2300
84031		3272	14078	12/03/1980 AIR	7.6	12	7.4	2880
	3327200008	3272	14079	12/03/1980 AIR	19	20	7.5	7010
84031	3327200008	3272	14080	12/03/1980 AIR	38	43	7.2	7550
	3327200008	3272	31042	9/08/1983 NKN			7.2	7500
	3327200008	3272	31060	9/08/1983 NKN			7.2	7500
84034		3272	14087	10/01/1969 BAL	20.72	22.9	7.4	3950
	3327208002	3272	14088	18/08/1971 AIR			8.25	3485
84055		3272	14094	12/01/1971 FLO			7.6	9287
84055	3327210002	3272	14095	8/04/1971 FLO	19.8	21	6.91	10286

84057	3272	14098	1/04/1972 BAL	44.19	46	8.08	3483
84058	3272	14099	20/03/1972 FLO	8.53	10.4	6.74	3215
84058 3327210006	3272	14100	20/03/1972 FLO	31.39	34.4	7.36	4447
84059	3272	14101	4/10/1972 AIR	24.99	28.6	8.67	2035
84060	3272	14102	12/12/1972 FLO	9.14	12.2	7.18	7932
84063	3272	14105	1/02/1974 AIR	22.55	25.6	7.55	3800
84063 3327210011	3272	14106	1/02/1974 AIR	34.13	46.6	7.28	3120
84076	3272	14116	4/05/1979 AIR	31	34.5	8.38	2450
84084	3272	14119	4/12/1981 AIR	20	24.5	8.4	2950
84091	3272	52112	25/01/1982 FLO	42.67	49.1	6.9	4800
84104	3272	23466	9/01/1976 FLO	15.84	18.6	2.46	8700
84105	3272	41456	11/10/1988 BAL	25	29.2	7.6	2600
84107	3272	44046	16/10/1990 BAL	21.8	25.1	7.5	1900
87454	3363	34161	17/03/1985 BAL	290	330	7.6	8400
87454 3336310044	3363	34161	17/03/1985 BAL	290	330	7.6	8400
87459	3363	38341	21/02/1987 NKN			7.8	7000
106191	3935	22281	23/02/1973 FLO	0	59.4	6.11	1238
106192	3935	22282	23/02/1973 AIR			6	2160
106211	3935	22306	13/07/1973 AIR	47.85	53.9	4.46	7007
106220	3935	22311	2/02/1974 BAL	61	71	6.32	1400
106223	3935	22312	7/03/1975 AIR	47.55	77.7	7.7	1920
106264	3935	22349	3/03/1980 AIR	64	66.3	7.7	1700
112753	2920	45885	6/02/1992 NKN			7.5	2000
112881	2920	45930	16/02/1992 NKN			7.5	1900

Appendix F3

Standing Water Level (SWL)

SITE NO WATER SCR	REEN FROM (m)	TO (m) LITHO LOG	BY CASING DEPTH	(m) DIA (r	ກm) ຮ	SWL (m)	PUMP DEPTH	(m)	PUMP RATE (1/sec)	PUMP TIME (H:M)	DRAW [
71192 SCREEN	43	123									
71713 SCREEN	48.8	53.6 SAND				5.8					
71713 WATER	48.8	53.6 SAND	4	48.8	114	5.8		53.6	0.4		
71729 SCREEN	49				102	14				0:30)
71729 WATER	49	53.7 SAND	Ę	53.7	114	14		0	0.4		
71739 SCREEN	44	44.8 NOT				9.1				2:00)
71739 WATER	44	44.8 SAND	4	14.8	114	9.1		44.8	0.7		
71743 SCREEN	27	28.3 SAND			102	2.5				0:15	5
71743 WATER	27	28.3 SAND		27	114	2.5		28.3	1		
71747 SCREEN	13.5	14.4 SAND			102	2.5				0:30)
71747 WATER	13.5	14.4 SAND		13.5	114	2.5		14.4	0.5		
71753 SCREEN	53	56.4 SAND			102	6				0:30)
71753 WATER	53	56.4 SAND		53	114	6		46.4	0.5		
71755 SCREEN	28.5	30.5 SAND			102	6.5				0:15	5
71755 WATER	28.5	30.5 SAND		28.5	114	6.5		30.5	1		
71794 SCREEN	65	70 SAND			101	7				0:30)
71794 SCREEN	56	60 SAND			101						
71794 WATER	65	70 SAND		65	114	0		0	0		
71794 WATER	56	65 SAND		65	114	7		70	1.3		
84058 SCREEN	31.4	34.7 NOT				4.3					
84058 WATER	31.4	34.7 SAND		35	114	4.3		0	0.5		
84063 SCREEN	0	47.5 NOT								0:30)
84063 WATER	34.1	46.6 BASA		29.3	127	4		0	0.6		
84063 WATER	22.6	25.9 SAND		29.3	127	10.7		0	0.5		

AW DOWN	(m)	EC	TEST TYPE	TEST DATE
				2/06/1972
	1.2		BAL	4/11/1974
	1.2	0		4/11/1974
	5		BAL	9/02/1978
	5	0		9/02/1978
	5.2		BAL	30/06/1978
	5.2	0		30/06/1978
	4		BAL	21/03/1979
	4	0		21/03/1979
	4		BAL	10/03/1979
	4	0		10/03/1979
	4		BAL	22/01/1980
	4	0		22/01/1980
	1		BAL	20/01/1980
	1	0		20/01/1980
	5		BAL	12/01/1984
				12/01/1984
	0	0		12/01/1984
	5	0		12/01/1984
	16.4		NKN	20/03/1972
	16.4	0		20/03/1972
			BAL	21/11/1973
	15.2	0		21/11/1973
	23.2	0		21/11/1973

Rainfall Data

Stn_Num Ye	ear	NameAndl Jan	Feb	Mar	Apr	Ma	iy Jun	Jul	Au	g Se	эp	Oct	Nov E	Dec A	nn
86314	1996	Total Montl	58.8	98.2	58	83.6	25.8	83.2	115	99	104.4	69.8	46.2	30.4	872.4
86314	1997	Total Montl	23.4	1.8	23.8	20.4	71.4	52	42	49	63.8	42.2	80.2	7.4	477.4
86314	1998	Total Montl	58	69.6	24.4	53.2	59	67.6	65.8	16.2	66.6	128.4	65	87.8	761.6
86314	1999	Total Montl	47.8	51.8	58.2	48.2	60	49.2	30.6	71.4	53	62.6	33.4	90	656.2
86314		Total Montl	51.8	61	14.6	51	142.3	48.4	55.9	62.4	100.8	102.8	47.4	67.5	805.9
86314	2001	Total Montl	22	67.2	57.5	142.3	26.8	67.1	21.2	96.7	30.7	111.1	75.6	52.2	770.4
86314	2002	Total Montl	53.1	76.6	13.4	53.8	66.2	45.3	46.2	45.2	73.2	57.2	34.8	34.1	599.1
86314	2003	Total Montl	31.6	8	39.5	64.8	26.5	28.6	105.5	81.9	67.4	98	37	39.4	628.2
86314		Total Montl	60.6	33.7	24.8	66.5	56.6	99.7	54.6	75.2	108.7	57.7	116.9	54.2	809.2
86314	2005	Total Montl	33.8	134	14.6	28.5	20.3	42.1	58.7	103.4	82.2	56.6	87.8	77.3	739.3
86314	2006	Total Montl	54.8	46.2	25.4	82.7	78.2	15.8	35	42	41.8	19.2	44.5	31.7	517.3
86314	1.000	Total Montl	29.2	40	41.9	23	66	63.5	100.4	53 —					-
		Total Montl	50	50	50	50	50	49	50	50	50	50	50	50	48
86314 Me		Total Montl	48	45	47.6	63.3	73.6	63	70.9	78.2	82.5	78.6	65.8	60.9	781.7
86314 Me	edian	Total Montl	46.9	41.7	44.1	56.7	72	62	66.7	79.9	82.3	72.9	65.3	51.5	800.6
86314 Lo		Total Montl	2	1	9.9	12.3	20.3	15.8	21.2	16.2	19.2	19.2	14.4	7.4	477.4
86314 Hi	ighest	Total Montl	146.6	172.9	193.9	142.3	165.2	136.8	122	127.8	158.3	146.6	136.8	155.7	1035.6

Koo Wee Rup Rainfall Data