



# Preliminary Site Investigation

Part of 250 Drysdale Road, Little River



## **Document Information**

#### Preliminary Site Investigation, Part of 250 Drysdale Road, Little River

Prepared by:

Senversa Pty Ltd

ABN: 89 132 231 380

Level 6, 15 William Street, Melbourne, VIC 3000 tel: + 61 3 9606 0070; fax: + 61 3 9606 0074

www.senversa.com.au

Prepared for:

**Barro Group** 

191 Drummond Street Carlton VIC 3053

| Revision | Date             | Author | Reviewed | Approved | Detail |
|----------|------------------|--------|----------|----------|--------|
| 0        | 1 September 2021 | LT     | MR       | MR       | Final  |
| 1        | 20 October 2021  | LT     | MR       | MR       | Final  |

#### **Disclaimer and Limitations:**

This document is confidential and has been prepared by Senversa for use only by its client and for the specific purpose described in our proposal which is subject to limitations. No party other than Senversa's client may rely on this document without the prior written consent of Senversa, and no responsibility is accepted for any damages suffered by any third party arising from decisions or actions based on this document. Matters of possible interest to third parties may not have been specifically addressed for the purposes of preparing this document and the use of professional judgement for the purposes of Senversa's work means that matters may have existed that would have been assessed differently on behalf of third parties.

Senversa prepared this document in a manner consistent with the level of care and skill ordinarily exercised by members of Senversa's profession practising in the same locality under similar circumstances at the time the services were performed.

Permission should be sought before any reference (written or otherwise) is made public that identifies any people, person, address or location named within or involved in the preparation of this report. Senversa requires that this document be considered only in its entirety and reserves the right to amend this report if further information becomes available. This document is issued subject to the technical principles, limitations and assumptions provided herein in **Section 9.0** 

#### © Senversa Pty Ltd 2021

Senversa acknowledges the traditional custodians of the land on which this work was created and pay our respect to Elders past and present.

Senversa is an accredited BCorp.



## Contents

| List of | f Acronyms                                                      | V  |
|---------|-----------------------------------------------------------------|----|
| 1.0     | Introduction and Objectives                                     | 1  |
| 1.1     | Background                                                      | 1  |
| 1.2     | Project Objectives                                              | 1  |
| 1.3     | Scope of Works                                                  | 1  |
| 2.0     | Site Description                                                | 2  |
| 2.1     | Site Details                                                    | 2  |
| 2.2     | Environmental Setting                                           |    |
| 2.3     | EPA Online Resources                                            |    |
| 2.0     | 2.3.1 Priority Sites Register Review                            |    |
|         | 2.3.2 EPA Licensed Activities                                   | 3  |
|         | 2.3.3 EPA Victoria Landfill Register                            | 3  |
|         | 2.3.4 Nearby Environmental Audits                               | 4  |
|         | 2.3.5 Groundwater Quality Restricted Zones                      | 4  |
| 3.0     | Site History Review                                             | 5  |
| 3.1     | Previous Occupiers and Uses                                     | 5  |
|         | 3.1.1 Historical Land Titles                                    | 5  |
|         | 3.1.2 Historical Directories Search                             | 5  |
|         | 3.1.3 Historical Aerial Photographs                             | 6  |
| 3.2     | Database Searches                                               | 7  |
|         | 3.2.1 Existing Underground Services                             | 7  |
|         | 3.2.2 Dangerous Goods Records                                   | 7  |
|         | 3.2.3 Cathodic Protection Systems for Underground Storage Tanks | 7  |
|         | 3.2.4 General Internet Search                                   | 7  |
| 4.0     | Site Inspection                                                 | 8  |
| 5.0     | Potential Sources of Contamination                              | 9  |
| 6.0     | Investigation Methodology                                       | 10 |
| 6.1     | Relevant Standards and guidelines                               | 10 |
| 6.2     | Investigation Rationale                                         | 10 |
| 6.3     | Fieldwork Methodology                                           | 10 |
| 6.4     | Laboratory Analysis                                             | 12 |



| 6.5   | Regulatory Framework                                    | 12 |
|-------|---------------------------------------------------------|----|
| 6.6   | Quality Assurance / Quality Control                     | 15 |
| 7.0   | Soil Contamination Assessment                           | 16 |
| 7.1   | Generalised Soil Profile                                | 16 |
| 7.2   | Soil Analytical Results                                 | 16 |
| 7.3   | Preliminary Waste Classification                        | 17 |
| 7.4   | Impacts to Environmental Values of Land                 | 17 |
| 7.5   | Duty to Notify                                          | 18 |
| 8.0   | Conclusion                                              | 19 |
| 9.0   | Principles and Limitations of Investigation             | 20 |
| 10.0  | References                                              | 22 |
|       |                                                         |    |
| Table | e 2-1: Site Description                                 | 2  |
| Table | e 3-1: Summary of Historical Titles                     | 5  |
| Table | e 3-3: Historical Aerial Photograph Review              | 6  |
| Table | e 3-2: Dial Before You Dig Review                       | 7  |
| Table | e 4-1: Site Inspection Observations                     | 8  |
| Table | e 5-1: Potential Contamination Sources                  | 9  |
| Table | e 6-1: Investigation Rationale                          | 10 |
| Table | e 6-2: Fieldwork Methodology                            | 10 |
| Table | e 6-3: Laboratory Analysis                              | 12 |
| Table | e 6-4: Soil Quality Objectives                          | 14 |
| Table | e 7-1: Lithology                                        | 16 |
|       | e 7-2: Risks to Protected Environmental Values for Land |    |
| Table | e 9-1: Summary of General Principles and Limitations    | 20 |



**Figures** 

Tables

Appendix A: Property Planning Report

Appendix B: Lotsearch Report

Appendix C: Historical Titles

Appendix D: Dial Before you Dig Plans

Appendix E: Dangerous Goods Search

Appendix F: Cathodic Protection Search

Appendix G: Site Photographs

Appendix H: Data Validation

Appendix I: Borelogs

Appendix J: Laboratory Analytical Reports



# List of Acronyms

| Acronym | Definition                                                         |
|---------|--------------------------------------------------------------------|
| ABC     | Ambient background concentration                                   |
| ACM     | Asbestos containing material                                       |
| AS      | Australian Standard                                                |
| ANZECC  | Australian and New Zealand<br>Environment and Conservation Council |
| вн      | Borehole                                                           |
| ВРЕМ    | Best Practice Environmental<br>Management                          |
| coc     | Chain of custody                                                   |
| СоРС    | Contaminant of potential concern                                   |
| CSM     | Conceptual site model                                              |
| DSE     | Department of Sustainability and Environment                       |
| EC      | Electrical conductivity                                            |
| EIL     | Ecologically based investigation level                             |
| ЕМР     | Environmental Management Plan                                      |
| ЕРА     | Environment Protection Authority (Victoria)                        |
| ERS     | Environmental Reference Standard                                   |
| ESL     | Ecological screening level                                         |

| Acronym | Definition                                      |
|---------|-------------------------------------------------|
| HIL     | Health-based investigation level                |
| HSL     | Health screening level                          |
| LOR     | Limit of reporting                              |
| LTV     | Long term trigger values                        |
| m bgl   | Metres below ground level                       |
| NATA    | National Association of Testing<br>Authorities  |
| NEPC    | National Environment Protection Council         |
| NEPM    | National Environment Protection<br>Measure      |
| NHMRC   | National Health and Medical Research<br>Council |
| PSI     | Preliminary Site Investigation                  |
| PSR     | Priority Sites Register                         |
| QA      | Quality assurance                               |
| QC      | Quality control                                 |
| RPD     | Relative percentage difference                  |
| TKN     | Total kjeldahl nitrogen                         |
| μg/kg   | Micrograms per kilogram                         |



## 1.0 Introduction and Objectives

### 1.1 Background

Barro Group Pty Ltd (Barro Group) engaged Senversa Pty Ltd to conduct a Preliminary Site Investigation (PSI) with limited soil investigation at a portion of the property located at 250 Drysdale Road, Little River (the site). The site location and boundary are presented on **Figure 1**.

Barro Group purchased the site approximately 10 years ago. Prior to the purchase, the site the subject of the investigation was used by Pivot for fertiliser storage until approximately 2005. The exact use of the site by Pivot is unknown.

The site is approximately 100,000 m<sup>2</sup> and is located to the immediate east of the current Barro Group quarry.

### 1.2 Project Objectives

The objectives of the PSI with limited soil investigation were to:

- Investigate the site history to establish potential contaminating activities that may have occurred
  on the site
- Assess the contamination status of site soils based on historical site use.
- Define the extent of contamination (if any).
- Recommend remediation methods (if required).
- Assess the potential for the duty to notify in accordance with the Environment Protection Act 2017.

## 1.3 Scope of Works

The following scope of works was completed:

- The commission and review of an Environmental and Planning report from Lotsearch® which included:
  - Planning zones and overlays
  - Environmental setting information including geological and hydrogeological information.
  - Historical aerial photography dating back to 1968.
  - Historical and current titles showing land holdings dating back to 1881.
  - Regulatory agent records including priority sites register (PSR) and nearby environmental audit sites.
- A site inspection to identify visible evidence of potential contamination sources, site surface coverage, surrounding land use and topography.
- An intrusive soil investigation, including drilling and sampling of 10 soil bores and five surface sample locations.
- Laboratory analysis of soil by laboratories accredited by the National Association of Testing Authorities (NATA) for the analytical methods used.
- Collation and interpretation of data including a quality assurance / quality control (QA/QC) data validation process.
- Preparation of this report detailing the findings of the assessment.



# 2.0 Site Description

### 2.1 Site Details

The following table summarises the relevant details that describes the site. Property planning information is provided in **Appendix A**.

**Table 2-1: Site Description** 

| ltem                          | Relevant Site Information                                                                |
|-------------------------------|------------------------------------------------------------------------------------------|
| Site Address                  | Part of 250 Drysdale Road, Little River.                                                 |
| Title Plan Identifier         | Part of Lot 2 PS344713                                                                   |
| Site Area                     | Approximately 100,000 m <sup>2</sup>                                                     |
| Municipality                  | City of Greater Geelong                                                                  |
| Current Zoning                | Farming Zone (FZ)                                                                        |
|                               | Current site overlays include Bushfire Management (BMO) and Significant Landscape (SLO). |
|                               | An area of aboriginal cultural heritage is located to the immediate south of the site.   |
| Current Site Occupier and Use | The site is currently owned by Barro Group. The site is currently unused.                |
| Surrounding Land Uses         | North – Vacant bush land followed by SSAA Rifle Range and Paint Ball Park                |
|                               | South – You Yangs Regional Park                                                          |
|                               | East – Vacant bush land followed by farming land                                         |
|                               | West – Active quarry                                                                     |

## 2.2 Environmental Setting

**Table 2.2** summarises the relevant environmental setting information for the site, sourced from the Lotsearch report (provided in **Appendix B**) and observations from Senversa's site inspection.

**Table 2.2: Environmental Setting** 



| ltem                                              | Details                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Topography, Drainage and Surface<br>Water Bodies. | The site is generally flat with a topographical elevation of 170 m Australian Height Datum (m AHD) according to the Lotsearch report ( <b>Appendix B</b> - page 6). The site is surrounded by steep rocky outcrops with a maximum elevation of 250 m AHD.                                                                                                                                           |
|                                                   | A dam is present in the western portion of the site.                                                                                                                                                                                                                                                                                                                                                |
|                                                   | The You Yangs Regional Park is located to the immediate south of the site. Several small unnamed waterbodies are located within the Regional Park area.                                                                                                                                                                                                                                             |
| Regional Geology                                  | The regional geology reported by Lotsearch ( <b>Appendix B</b> - page 44-45) shows that site is underlain by the Pleistocene to Holocene aged granite derived colluvium comprising of quartz and feldspar sand. The surrounding land to the north, east and south comprises the Late Devonian You Yangs Granite.                                                                                    |
| Regional Hydrogeology                             | The regional hydrogeology reported by Lotsearch ( <b>Appendix B</b> – page 37-38) identified that the water table in the upper aquifer ranges from 20 to 50 m below ground level (bgl). The aquifer is described as having 'low to moderate productivity'. Based on topography, regional groundwater flow may be to the east towards Port Phillip Bay, approximately 16 km to the east of the site. |
|                                                   | Groundwater salinity is likely to range between 3,500 to 7,000 mg/L. This salinity would conservatively classify the groundwater as Segment 'C' as defined under the State Environment Protection Policy (Waters of Victoria), 2018 (SEPP Waters).                                                                                                                                                  |
| Groundwater Bore Search                           | The Lotsearch report ( <b>Appendix B</b> – pages 39-40) included a search for registered groundwater bores within 2 km of the site boundary. No wells were identified within the site boundary; however several wells were located within the greater 250 Drysdale Road area including three monitoring wells, two registered for observation and the third registered for industrial purposes.     |

### 2.3 EPA Online Resources

### 2.3.1 Priority Sites Register Review

A review of the EPA Priority Sites Register (PSR) on 29 July 2021 by Lotsearch indicated no records of an active EPA priority site within 1 km of the site. The extract from the PSR search is provided in the Lotsearch report (**Appendix B** – page 7).

#### 2.3.2 EPA Licensed Activities

The site is listed as a former EPA licenced activity (licence number SW4238#5) under Kalari Propriety Limited for extractive industry and mining. The extract from the register is provided in the Lotsearch report (**Appendix B** – page 13).

The historical land titles summarised below in **Section 3.1.1** confirms that the site was owned by Kalari Propriety Limited from 2007 to 2012, prior to Barro Group purchasing the site in 2012.

#### 2.3.3 EPA Victoria Landfill Register

The site is listed on the EPA Victoria Landfill Register under 'The Phosphate Co-operative Company of Australia LTD, Pt C/A 14 Sec A And Pt C/A 7 Sec 11 Parish of Wurdi Youang, Woolatta'. The register states that the landfill was closed in 2003 and that the waste type comprised prescribed industrial waste (PIW) and chemical gypsum. The extract from the register is provided in the Lotsearch report (**Appendix B** – page 14 - 16).

The historical land titles summarised in **Section 3.1.1** confirms that the site was owned by The Phosphate Co-operative Company of Australia LTD, subsequently PIVOT Limited from 1980 to 2003.



#### 2.3.4 Nearby Environmental Audits

EPA Victoria publishes a list of properties for which a certificate or statement of environmental audit has been issued under Part IXD of the *Environment Protection Act*, 1970. These reports can provide useful information on the condition of nearby sites and the potential for contamination at the subject site. A review of the list identified no records of statements or certificates of environmental audit within a 1 km radius of the site (**Appendix B**, page 10).

### 2.3.5 Groundwater Quality Restricted Zones

A review of EPA Victoria's published list of Groundwater Quality Restricted Use Zones (GQRUZ) on 13 July 2021 by Lotsearch indicated no records exist within the buffer range of the site (1 km) (**Appendix B** – page 11).



## 3.0 Site History Review

## 3.1 Previous Occupiers and Uses

#### 3.1.1 Historical Land Titles

Historical titles were obtained for the site. The historical titles showed that the property was three different parcels until 1937 and owned by private landholders who used the land as either farming or grazing. In 1937, the site became one property and was owned by various proprietors as detailed in **Table 3-1** below. A copy of the titles is provided in **Appendix C**.

**Table 3-1: Summary of Historical Titles** 

| Site Address                         | Volume / Folio                                                                      | Registered Proprietor                                                               | Date                                    |
|--------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------|
| 250 Drysdale<br>Street, Little River | Volume 1260 Folio 855<br>Volume 1223 Folio 513                                      | James Barnes Kershaw (Grazier)                                                      | 18.05.1937<br>(1937 to 1971)            |
|                                      | Volume 1213 Folio 529                                                               |                                                                                     |                                         |
|                                      | Volume 1260 Folio 855<br>Volume 1223 Folio 513                                      | Laurence Geoffrey Jennings (Manufacturer)<br>Betty Allison Jennings (Married Woman) | 16.04.1971<br>(1971 to 1972)            |
|                                      | Volume 1213 Folio 529                                                               | (Executors of the Will of James Barnes Kershaw)                                     | (10111111111111111111111111111111111111 |
|                                      | Volume 1260 Folio 855<br>Volume 1223 Folio 513                                      | Mitchell and English Sand Proprietary Limited                                       | 14.12.1972<br>(1972 to 1973)            |
|                                      | Volume 1213 Folio 529                                                               |                                                                                     | ,                                       |
|                                      | Volume 1260 Folio 855<br>Volume 1223 Folio 513<br>Volume 1213 Folio 529             | Trans-West Cement Haulage Proprietary Limited                                       | 18.12.1973<br>(1973 to 1980)            |
|                                      | Volume 9007 Folio 644                                                               |                                                                                     |                                         |
|                                      | Volume 1260 Folio 855<br>Volume 9391 Folio 123<br>Volume 1223 Folio 513             | The Phosphate Co-Operative Company of Australia<br>Limited<br>Now                   | 13.05.1980<br>(1980 to 2003)            |
|                                      | Volume 9391 Folio 122<br>Volume 9007 Folio 644<br>Now All<br>Volume 10275 Folio 234 | Pivot Limited                                                                       |                                         |
|                                      |                                                                                     |                                                                                     |                                         |
|                                      | Volume 10275 Folio 234                                                              | Transwest Haulage Pty Ltd                                                           | 08.04.2003<br>(2003 to 2007)            |
|                                      | Volume 10275 Folio 234                                                              | Kalari Pty Limited                                                                  | 12.02.2007<br>(2007 to 2012)            |
|                                      | Volume 10275 Folio 234                                                              | # Barro Group Pty Ltd                                                               | 03.07.2012<br>(2012 to Date)            |

#### 3.1.2 Historical Directories Search

A review of the historical business directories (1905 - 1991) and historical street directories included in the Lotsearch (**Appendix B** – pages 18-20) did not identify any listed businesses on the site or within the buffer range of the site (1 km).



### 3.1.3 Historical Aerial Photographs

Historical photographs dating back to 1968 are provided on pages 22 – 31 in **Appendix B.** 

#### Table 3-2: Historical Aerial Photograph Review

| Photograph                    | Observations                                                                                                                                                               |                                                                                                                               |  |  |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|
|                               | On-Site                                                                                                                                                                    | Surrounding Land                                                                                                              |  |  |
| Year: 1968<br>Black and White | The site appears to be largely vacant<br>agricultural land. A small portion of the<br>western site area has minor land<br>disturbance likely associated with<br>quarrying. | The land to the west has been disturbed by possible quarrying                                                                 |  |  |
| Year: 1972 - 1978             | The site appears to be largely                                                                                                                                             | The quarry to the west of the site has expanded.                                                                              |  |  |
| Black and White               | unchanged.                                                                                                                                                                 | <ul> <li>Land disturbance approximately 200m to the north<br/>of the site, potentially to do with the rifle range.</li> </ul> |  |  |
| Year: 1985<br>Black and White | The site appears to be used as stockpile<br>storage, likely associated with Pivot<br>Fertiliser.                                                                           | Surrounding land use remains unchanged from 1978.                                                                             |  |  |
|                               | <ul> <li>A dam is present in the western portion<br/>of the site.</li> </ul>                                                                                               |                                                                                                                               |  |  |
| Year: 1990<br>Colour          | The site appears to be unchanged from<br>1985. The colour photograph makes it<br>possible to distinguish between water<br>bodies and stockpiles.                           | Surrounding land use remains unchanged from 1978.                                                                             |  |  |
| Year: 2004                    | Stockpiles have been removed from the site. The site appears largely unused.                                                                                               | Activity at the quarry to the west appears to have reduced.                                                                   |  |  |
| Colour                        | The dam in the western portion of the site remains.                                                                                                                        |                                                                                                                               |  |  |
| Year: 2010 - 2021             | The site appears unused with grass now covering the historical stockpile storage                                                                                           | Activity at the quarry resumes with the quarry land<br>mass spreading further east in 2021.                                   |  |  |
| Colour                        | area.                                                                                                                                                                      | mass spreading futurer east in 2021.                                                                                          |  |  |

In summary, the site appeared to be vacant with minor quarrying activities in the western portion until the early 1980s when the site was used by Pivot Fertiliser to store fertiliser products. By the early 2000's Pivot fertiliser no longer occupied the site and all stockpiles were removed. The site remained vacant from the early 2000s.



#### 3.2 Database Searches

#### 3.2.1 Existing Underground Services

DBYD plans are provided in **Appendix D**. The table below summarises the services identified in and around the site and whether they are expected to be present on site.

Table 3-3: Dial Before You Dig Review

| Service Type       | Service Provider        | Expected present on site |  |
|--------------------|-------------------------|--------------------------|--|
| Gas                | Ausnet                  | No.                      |  |
| Sewer, Stormwater  | City of Greater Geelong | No                       |  |
| Telecommunications | Telstra                 | No.                      |  |
| Power              | Powercor                | No.                      |  |
|                    |                         |                          |  |

### 3.2.2 Dangerous Goods Records

WorkSafe Victoria completed a search of their database for records held for the site. A search of the database did not identify any records of a notification of dangerous goods stored or handled at the site. A copy of the response from WorkSafe Victoria is provided in **Appendix E**.

#### 3.2.3 Cathodic Protection Systems for Underground Storage Tanks

Energy Safe Victoria maintains a database of registered cathodic protection system, some of which are associated with underground storage tanks (USTs). A search of their online database indicated no assets were listed in relation to the site. Copies of the Energy Safe Victoria searches are included in **Appendix F**.

#### 3.2.4 General Internet Search

A general internet search conducted on 3 August 2021 for the site did not return any relevant results which may indicate current or historic contaminating activities.



# 4.0 Site Inspection

The site was inspected by a Senversa representative on 10 August 2021 to identify and confirm potential sources of contamination. The inspection results are summarised in **Table 4-1** below. Site photographs are provided in **Appendix G**.

#### **Table 4-1: Site Inspection Observations**

| Feature Identified (from AS4482-2005, S3.3)                                                                                                                                                                                                 | Detail                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Are there areas of discoloured soil, polluted water, affected plant growth and animal populations and significant odours?                                                                                                                   | There was no evidence of any discoloured soil on site. There was evidence of some surface water on site. There was no evidence of affected plant growth, affected animal populations or any significant odours.                                                                                                                                            |
| Is there any stockpiled material, imported soil or fill material such as slag, ashes, potential asbestos containing materials, scrap and industrial or chemical waste, as well as any signs of settlement, subsidence and disturbed ground? | There was evidence of stockpiled material on site. However, there was no evidence of anthropogenic material within the stockpiles but rather of natural excavated material.                                                                                                                                                                                |
| What is the direction of the flow of water run-off from the site and adjacent properties?                                                                                                                                                   | There was evidence of surface water on site. It is expected that surface runoff would run into the small settlement pond on site ( <b>Appendix H – Photo 8</b> ).                                                                                                                                                                                          |
| What is the depth of any standing water,<br>the direction and rate of flow of rivers,<br>streams or canals, together with their<br>flood levels and any tidal fluctuations?                                                                 | The depth of the standing water onsite was not measured. There was no evidence of any rivers, streams or canals that would be affected by any fluctuations on site.                                                                                                                                                                                        |
| Describe the location and condition of all visible features, including foundations, positions of former buildings, tanks, pits, wells, drains and bores.                                                                                    | There was no visual evidence of any former buildings or tanks on site, however, there was one groundwater monitoring well present on site (50 mm PVC pipe with no gatic cover). The main site feature included several drains on the site, draining towards the centre of the site and aggregate quarry. A dam was present towards the centre of the site. |
|                                                                                                                                                                                                                                             | An aggregate quarry was located to the immediate west of the site ( <b>Appendix H – Photo 1</b> ).                                                                                                                                                                                                                                                         |
| Detail the condition and type of ground cover, e.g. bare ground, asphalt, concrete, gravel, etc.                                                                                                                                            | The ground cover included an uncovered gravelly sand roadway, large protruding boulders and extended grass and plant cover ( <b>Appendix H – Photo 2</b> ).                                                                                                                                                                                                |
| Identify any chemical storage and transfer areas, including the presence of waste or chemical containers.                                                                                                                                   | There was no evidence of any chemical storage or transfer on site.                                                                                                                                                                                                                                                                                         |
| Describe the apparent condition and use of adjacent properties.                                                                                                                                                                             | The surrounding properties included the Wurdi Youyang Bushland Reserve and the SSAA Eagle Park Range. These were not considered a potential contamination concern.                                                                                                                                                                                         |
| Detail the location of settlement ponds.                                                                                                                                                                                                    | There was evidence of settlement ponds on site (Appendix H – Photo 8).                                                                                                                                                                                                                                                                                     |



## 5.0 Potential Sources of Contamination

**Table 5-1** below provides a summary of potential contaminants and possible sources, as identified within available information for the site and surrounding area. For each of the potential contaminants, Senversa has assessed the potential risk from information available for the site and provided qualitative rating based on Table 1 of the Department of Sustainability and Environment (DSE) Publication *Potentially Contaminated Land Practice General Practice Note* (DSE 2005).

**Table 5-1: Potential Contamination Sources** 

| Identified Potential Contamination Source | Contaminants of Potential Concern                                                                                                                                                                                                                                                                             | Risk Ranking and Summary                                                                                                                                                                                                                                                                                                           |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| On-Site Current and Historical Activitie  | es                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                    |
| Historical Fertiliser Storage             | Boron, cadmium, copper, iron,<br>manganese, molybdenum, zinc, sulfur,<br>major cations, ammonia, nitrite, nitrate,<br>total Kjeldahl nitrogen, total nitrogen, total<br>and reactive phosphorus                                                                                                               | HIGH Historical photographs demonstrate that the site was used to store fertiliser products for a period of 20 years. It is unknown how the stockpiles were stored and if any bunding was present. There is a high potential for contamination to be caused by this activity due to runoff from uncovered and unbunded stockpiles. |
| Historical Grazing and Agriculture        | Hydrocarbons, herbicides, pesticides, metals                                                                                                                                                                                                                                                                  | LOW  The site was likely historically used for grazing land. No evidence of agricultural crops or market gardens were identified from the historical review.                                                                                                                                                                       |
| Imported fill soil & wastes               | Various depending on the material of origin. Commonly encountered CoPC include metals, petroleum hydrocarbons, coke, ash, asbestos containing material (ACM). Less commonly encountered include pesticides, herbicides, phenolic compounds, cyanide wastes, solvents, polychlorinated phenols, and nutrients. | LOW Imported fill soils were not evident (except for potential fertiliser stockpile remnants) on site.                                                                                                                                                                                                                             |
| Off-Site Current and Historical Activitie | es                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                    |
| Quarry                                    | Hydrocarbons, per- and polyfluoroalkyl substances (PFAS), metals.                                                                                                                                                                                                                                             | LOW Aerial photography suggests that the site is used as a sand quarry and grading area, with no evidence of sand washing on-site.                                                                                                                                                                                                 |
| Grazing and Agriculture                   | Hydrocarbons, herbicides, pesticides, metals.                                                                                                                                                                                                                                                                 | LOW  The surrounding land was likely historically used for grazing land. No evidence of agricultural crops or market gardens were identified from the historical review.                                                                                                                                                           |
| Rifle Range                               | Lead, wadding.                                                                                                                                                                                                                                                                                                | LOW The rifle range is over 200m away from the site and separated from the site by a raised rocky outcrop.                                                                                                                                                                                                                         |
|                                           |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                    |



## 6.0 Investigation Methodology

## 6.1 Relevant Standards and guidelines

The field investigations were undertaken in general accordance with relevant elements of the following guidelines and standards:

- National Environment Protection Council (NEPC) *National Environment Protection (Assessment of Site Contamination) Amendment Measure* (No. 1) (NEPC, 2013).
- Standards Australia, Australian Standard (AS 4482.1) Guide to the Sampling and Investigation of Potentially Contaminated Soil, Part 2: Non-volatile and Semi-volatile compounds, 2005.
- Standards Australia, Australian Standard (AS 4482.2) Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil, Part 1: Volatile Substances, 1999.
- Environment Reference Standard. Victoria Government Gazette, No. S 245 (26 May 2021).

## 6.2 Investigation Rationale

The rationale for the field investigation was established based on a review of historical reports and the project objectives. The rationale for each area of the site is detailed in **Table 6-1** below with sample locations shown on **Figure 2**.

**Table 6-1: Investigation Rationale** 

| Matrix | Sample ID   | Rationale                                                                                                                                                |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soil   | SB01 – SB10 | These samples were a grid-based approach, aiming to conceptualise the soil profile and constituents, of the site as a whole.                             |
|        | SS01 – SS05 | This was identified as a target sample in areas of drainage and stockpiled material, due to this area historically being used as for fertiliser storage. |

## 6.3 Fieldwork Methodology

The methodology adopted for the field investigation works in detailed in **Table 6-2** below.

Table 6-2: Fieldwork Methodology

| Activity                         | ltem          | Description         |
|----------------------------------|---------------|---------------------|
| Underground<br>Service Clearance | Date          | 10 August 2021      |
|                                  | Subcontractor | Qest Infrastructure |



| Activity                           | Item          | Description                                                                                                                                                                                                                                                                                                |
|------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    | Method        | Prior to soil investigation works, proposed investigation locations were cleared for the presence of underground services via the following methodology:                                                                                                                                                   |
|                                    |               | Review of available service plans from the dial-before-you-dig online                                                                                                                                                                                                                                      |
|                                    |               | <ul> <li>Inspection of the site and immediate off-site areas for surface evidence and signage indicating utility locations and to confirm the presence and alignment of nearby and on-site sewerage infrastructure and underground services.</li> </ul>                                                    |
|                                    |               | <ul> <li>Tracing of known and redundant (where possible) underground utilities by<br/>an experienced underground utility locator using radio detection equipment.</li> <li>Senversa supervised this activity and discussed the findings with the locator<br/>personnel.</li> </ul>                         |
|                                    |               | Completion of Senversa's Borehole / Excavation Underground and Overhead Clearance Protocol prior to intrusive investigation.                                                                                                                                                                               |
| Soil Sampling                      | Date          | 10 August 2021                                                                                                                                                                                                                                                                                             |
|                                    | Subcontractor | Qest Infrastructure                                                                                                                                                                                                                                                                                        |
|                                    | Method        | 10 soil bore locations were advanced to a maximum depth of 2.0 metres below ground level (m bgl) using push tube methods (PT). Soil samples were collected from depths of 0.1 m, 0.5 m, 1.0 m and 2.0 m below ground level and where there was evidence of contamination, using a hand auger.              |
|                                    |               | <ul> <li>A further five surface sample locations were advanced to a maximum depth<br/>of 0.1 m below ground level (m bgl) using a hand trowel.</li> </ul>                                                                                                                                                  |
|                                    |               | <ul> <li>Disposable gloves were used and replaced between sampling locations to<br/>avoid cross contamination. Equipment was cleaned prior to sampling each<br/>soil bore location using a Decon 90 solution followed by a clean water rinse.</li> </ul>                                                   |
|                                    |               | The stratigraphy encountered at each location and the depth of contamination samples collected are detailed within <b>Appendix I</b> .                                                                                                                                                                     |
| Avoidance of Cross                 | Procedure     | Sampling procedures used to prevent cross contamination involved:                                                                                                                                                                                                                                          |
| Contamination                      |               | The use of new dedicated disposable gloves at each sample location.                                                                                                                                                                                                                                        |
|                                    |               | <ul> <li>Decontamination of sampling equipment was undertaken using a water and<br/>Decon 90 solution between each sampling location. A separate vessel of<br/>clean water was used for a final rinse.</li> </ul>                                                                                          |
| Sampling Handling and Preservation | Procedure     | Soil samples were placed immediately within laboratory-supplied containers and stored in a cooler box with ice prior to and during transit to the laboratory. Samples were transported to the laboratory with an accompanying chain of custody (COC) documentation and laboratory provided security seals. |
|                                    |               | Details of the sample transportation and handling can be found on the COC and Sample Receipt Notification documentation provided with <b>Appendix J</b> .                                                                                                                                                  |



### 6.4 Laboratory Analysis

The analytical schedule completed during the investigation is summarised in **Table 6-3** below. The primary laboratory used for the soil analysis was ALS Environmental and the secondary laboratory was Eurofins.

Table 6-3: Laboratory Analysis

| Matrix | Analytes                                                                                                                                                                                                                                                       |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soil   | <ul> <li>36 Primary samples were analysed for metals (boron, cadmium, copper, iron, manganese,<br/>molybdenum, zinc), sulfur, major cations, ammonia, nitrite, nitrate, total Kjeldahl nitrogen, total<br/>nitrogen, total and reactive phosphorus,</li> </ul> |
|        | <ul> <li>2 duplicate samples were analysed for metals, for quality assurance / quality control (QA/QC) purposes.</li> </ul>                                                                                                                                    |

## 6.5 Regulatory Framework

The legislative framework for the protection of human health and the environment from pollution and waste is set out in the *Environment Protection Act 2017* (the Act), *Environment Protection Regulations 2021* (the Regulations) and the *Environment Reference Standard* (ERS), which took effect on 1 July 2021.

The Act establishes the following key duties:

- The *general environmental duty* (GED) which requires a person engaging in an activity to minimise risks of harm to human health or the environment so far as reasonably practicable.
- The duty to manage contaminated land which requires a person in management or control of land to minimise risks of harm to human health or the environment from the presence of existing contamination in land or groundwater.
- The *duty to notify* of contaminated land which requires certain types of contamination to be reported to the Environment Protection Authority (EPA).

Of the above duties, the duty to manage contamination and duty to notify contamination are relevant to the assessment of existing (legacy) contamination, while the GED applies primarily to management of risks due to current activities/operations.

Land (including water and sediment) is defined as contaminated if a waste or substance is present (1) above the naturally occurring background level and (2) creates a risk of harm to human health or the environment.

The ERS is the primary tool used to assess impacts on human health and the environment from pollution or waste. The ERS identifies:

- **Environmental values**, which are the uses, attributes or functions of the environment that should be achieved and maintained.
- **Indicators**, which are the parameters or markers used to assess whether environmental values are being achieved or maintained.
- **Objectives**, which are the levels or concentrations of indicators used to assess whether an environmental value is being achieved or maintained.



Most of the objectives for land and waters are derived using a quantitative risk-based approach. Where pollutant or waste concentrations meet specified objectives, the risk of harm to human health or the environment is assessed as low/negligible for that environmental value<sup>1</sup>.

The following sections set out the relevant environmental values, indicators and objectives used to assess the risk of harm to human health and the environment for this investigation, and therefore whether land or water is contaminated.

#### **Relevant Land Use Category**

As discussed in **Section 2.0**, the site is currently vacant with proposed quarry future use. This is considered as Commercial / Industrial land use as defined in the ERS.

The applicable environmental values associated with commercial / industrial land use are:

- Maintenance of highly modified ecosystems.
- Human health.
- · Buildings and structures.
- · Aesthetics.

#### **Land Quality Objectives**

Land environment quality objectives (also commonly referred to as investigation or screening levels) for the applicable environmental values of land were adopted in accordance with Table 4.3 of the ERS, as described in **Table 6-4** below. The following site-specific exceptions and qualifications are noted:

- In the absence of site-specific soil property data, Ecological Investigation Levels (EILs) for nickel, chromium III, copper and zinc were derived for aged soil contamination based on the following conservative screening assumptions regarding soil properties:
  - Ambient background concentrations (ABCs) were assumed to be those for aged soils in regions with low traffic.
  - Added contaminant limits (ACLs) were assumed to be the minimum (most conservative) values specified in Table 1B(1) to 1B(4) of the NEPM (ASC).

<sup>-</sup>

<sup>&</sup>lt;sup>1</sup> It should be noted that meeting of objectives for environmental values relevant to a given land use scenario suggests that the risk of harm to health or the environment is low for the assessed scenario at a particular point in time. However, it doesn't necessarily confirm that contamination is not present. Further assessment and/or clean up may therefore still be indicated, e.g. where the land may in the future accommodate more sensitive uses or where impacts threaten the environmental values of adjacent land.



#### Table 6-4: Soil Quality Objectives

#### Environmental Value

#### Adopted Land Environment Quality Objectives / Investigation Levels

## Land dependent ecosystems and species

Objectives are the ecological investigation or screening level (EILs/ESLs) presented in Schedule B1 of the National Environment Protection (Assessment of Site Contamination) Measure (NEPM (ASC)).

For analytes with no EIL or ESL in the NEPM (ASC), risk-based values from other Australian and/or international sources have been adopted, as shown and referenced in the data summary tables.

For other analytes with no published values, the objective is the naturally occurring background level, unless site-specific risk assessment is completed to derive an alternative value.

#### **Human Health**

Objectives are the health investigation levels or health screening levels (HILs/HSLs) presented in Schedule B1 of the NEPM (ASC).

For analytes with no HIL or HSL in the NEPM (ASC), risk-based values from other Australian and/or international sources have been adopted, as shown and referenced in the data summary tables. The key alternative sources include:

- United States Environmental Protection Agency (USEPA) Regional Screening Levels (RSLs).
- Canadian Council of Ministers for the Environment (CCME) soil quality guidelines.
- CRC CARE Technical Report No. 10 HSLs for direct contact exposure pathways.

For other analytes with no published values, the objective is the naturally occurring background level, unless site-specific risk assessment is completed to derive an alternative value.

It is noted that HILs and HSLs should be applied to all sampled environmental media at the site, i.e.:

- The HILs in Table 1A(1) of the NEPM (ASC) are relevant for assessing health risks due to direct contact with soil and are applied only to soil data.
- The interim soil vapour HILS in Table 1A(2) of the NEMP (ASC) are relevant for assessing vapour intrusion risk and are applied only to soil vapour data.

#### **Buildings and Structures**

The objective is for land to be "not corrosive to or otherwise adversely affecting the integrity of structures or building material." Relevant indicators stated in Table 4.3 of the ERS are "pH, sulphate, chloride, redox potential, salinity or any chemical substance or waste that may have a detrimental impact on the structural integrity of buildings or other structures"

Objectives for these key indicators have been sourced from Australian Standard 2159–2009 Piling Design and Installation.

The potential for organic compounds (e.g. solvents or petroleum hydrocarbons) to corrode or adversely impact (e.g. permeate) non-metal underground services should also be considered, particularly where saturated concentrations or free phase product are in contact with buildings and/or structures.

#### **Aesthetic**

The ERS states the land should not be "offensive to the senses of human beings." The aesthetic quality of soil is a subjective assessment and typically the land should not:

- Appear stained or have starkly contrasting surface colours.
- Be odorous (unnatural odour).
- Have non-natural features that cause undue noise or sounds.

With respect to asbestos containing materials (ACM), Senversa adopts a criterion of 'no visible ACM' in surface soils (upper 10 cm).



### 6.6 Quality Assurance / Quality Control

The data QA/QC procedures were adopted by Senversa to provide a consistent approach to evaluation of whether the data quality objectives of the project have been achieved. The process focused on assessment of the useability of the data in terms of accuracy and reliability in forming conclusions on the condition of the elements of the environment being investigated. The approach was generally based on guidance from the following sources:

- Australian Standard AS4482.1 Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds (2005).
- NEPC, 2013. National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1): Schedule B3 Guideline on Laboratory Analysis of Potentially Contaminated Soils, Canberra: National Environment Protection Council.
- United States Environmental Protection Agency (USEPA) Guidance on Systematic Planning Using the Data Quality Objectives Process EPA QA/G-4 (2006).
- USEPA Guidance on Environmental Data Verification and Data Validation EPA QA/G-8 (2002).

Documentation of the data QA/QC assessment is presented within **Appendix H**. The majority of the results conformed to acceptance criteria and the data was considered to be representative of chemical concentrations in the environmental media sampled and therefore useable for their intended purpose of gaining an understanding of the contamination status of soil at the site.



## 7.0 Soil Contamination Assessment

#### 7.1 Generalised Soil Profile

The soil profile encountered at the site is summarised in the table below. Borelogs are provided in **Appendix I** with site photographs in **Appendix G**.

Table 7-1: Lithology

| Lithology | Approximate Depth<br>Range (m bgl) | Soil Description                                                                                                                               |
|-----------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Fill      | 0 – 1.2                            | Silty Sand, Gravelly Silty sand and Gravel.  Some fill soil present on site may potentially be reworked natural soil from the adjacent quarry. |
| Natural   | 0 – 1.5                            | Clayey Sand, Gravelly Sand, Sand and Sandy Clay.                                                                                               |

The following observations were noted during the soil investigation works:

- A fine layer of black plastic was noted at the base of the fill soil at SB02, SB06, SB07 and SB10.
- Trace wood fragments were identified in fill soil at SB02 and SB06.
- No odours or staining were noted during the investigation.

## 7.2 Soil Analytical Results

The attached **Table 1** provides a summary of the soil laboratory results obtained by Senversa compared to the adopted environmental values for commercial and industrial land use. Laboratory analytical reports are provided in **Appendix J**. The location of soil bores (SB) and surface samples (SS) are presented on **Figure 2**.

All concentrations were below the adopted environmental values except for zinc at one investigation location (SB06). Zinc concentrations at SB06 ranged from 151 mg/kg at 0.5-0.6 m bgl to 190 mg/kg at 1.0 - 1.1 mg/kg exceeding the environmental value of 150 mg/kg.

Detectable concentrations below the adopted environmental values are summarised below:

- Measurable concentrations of total sulfur were detected in fill and natural soil across the site ranging from 0.01 % (SB01) to 8.26 % (SB02).
- Measurable concentrations of inorganics, for which there are no ERV in the NEMP, were detected in fill and natural soil across the site including:
  - Nitrate ranging from 0.1 to 1,860 mg/kg (SB06\_1.0-1.1).
  - Total nitrogen ranging from 50 mg/kg to 19,300 mg/kg (SB06\_1.0-1.1).
  - Phosphorus ranging from 72 mg/kg to 15,200 mg/kg (SB05 0.1 0.2)
- Measurable concentrations of major ions including calcium, magnesium, potassium and sodium.
- Measurable concentrations of metals including cadmium, copper and manganese.

The elevated concentrations of zinc and measurable concentrations of metals, major ions and inorganics (forms of nitrogen and phosphorous) and considered to be associated with the historical use of the site by Pivot Fertiliser.



## 7.3 Preliminary Waste Classification

The attached **Table 2** provides a summary of the soil laboratory results obtained by Senversa compared to Waste Disposal Categories – Characteristic Thresholds.

Based on the analytical results, the fill soil at the site would be provisionally categorised as Category D Contaminated Soil due to elevated concentrations of cadmium in fill soil at SB02 and SB05. Impacts to Environmental Values of Land

As discussed in **Section 7.3** above, all concentrations of chemical analytes in analysed soil samples were below the adopted ecological and human health assessment criteria with the exception of zinc at one investigation location.

**Table 7-2** below summarises the potential risk posed by identified soil contamination to the protected environmental values of land under the current (commercial / industrial) land use

Table 7-2: Risks to Protected Environmental Values for Land

| Environmental<br>Value                               | Environmental<br>Value<br>Potentially<br>Precluded<br>(Y/N) | Analytes<br>Exceeding<br>Objectives | Potential Unacceptable Risk for ongoing Commercial/Industrial use?                                                                                                                                                                                                                            |
|------------------------------------------------------|-------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maintenance of<br>Ecosystems<br>(Highly<br>modified) | Yes                                                         | Zinc                                | No In the context of the localised zinc concentration, the future use of the site (quarry) the highly modified nature of the site, surface and shallow fill soils are not considered to pose an unacceptable risk.                                                                            |
| Human Health                                         | No                                                          | -                                   | No No exceedances of human health screening levels were recorded for soils at the site.                                                                                                                                                                                                       |
| Buildings &<br>Structures                            | -                                                           | -                                   | No pH and sulfate were not analysed as part of this scope of works therefor the assessment against buildings and structures cannot be completed. However, the known geology in the area is not known to be corrosive, nor are the inorganics assessed. Therefore, the risk is considered low. |
| Aesthetics                                           | No                                                          | -                                   | No Although fill soil is present at the site, only minor anthropogenic material (trace plastic and wood) was identified with no odours or staining.                                                                                                                                           |



## 7.4 Duty to Notify

As detailed in **Section 6.5** above, the *duty to notify* of contaminated land came into effect on 1 July 2021 which requires certain types of contamination to be reported to the EPA. Although elevated concentrations of zinc were identified above the adopted environmental values, the contamination is considered exempt from notification as the concentrations are below the human health values for the current and proposed future land use as detailed in Section 3 of EPA Publication 2008.1. Further, the elevated inorganic indicators (forms of nitrogen and phosphorous) are not listed in Schedule B1 of the NEMP and therefore are not considered in the regulations as prescribed notifiable contamination.



## 8.0 Conclusions and Recommendations

The key findings of the PSI with limited soil investigation are as follows:

- The site was used by Pivot Fertiliser from the early 1980s to the early 2000s. It is unknown exactly
  how Pivot used the site however evidence of fertiliser product stockpiling was identified from
  historical photographs.
- The desktop review and site inspection did not identify any other significant potential sources of contamination other than the use of the site by Pivot Fertiliser.
- Fill soil across the site ranged from 0.0 m to 1.2 m thick and comprised Silty Sand, Gravelly Silty Sand, and Gravel. A black plastic lining was identified below the fill soil at SB02, SB06, SB07 and SB10.
- Soil analytical results identified all concentrations were below the adopted environmental values
  except for zinc at one investigation location (SB06). Zinc concentrations at SB06 ranged from 151
  mg/kg at 0.5-0.6 m bgl to 190 mg/kg at 1.0 1.1 mg/kg exceeding the environmental value of 150
  mg/kg.
- Measurable concentrations of inorganics, major ions and metals were identified in fill and natural
  soil across the site below the adopted environmental values. All measurable concentrations are
  likely associated with the storage of fertiliser at the site. The presence of elevated nitrogen and
  phosphorous in soil represents a risk to surface waters at the site and further investigation should
  be considered to assess the potential for site and downstream impact in surface waters.
- Fill soil at the site would be provisionally categorised as Category D Contaminated Soil for off-site disposal due to elevated concentrations of cadmium.
- The identified soil contamination does not meet the threshold triggers of prescribed notifiable contamination.
- It is recommended that a Soil Management Plan (SMP) be developed to manage the impacted material identified on-site that will become surplus during future quarry extension works. This should include development of a suitable on-site management strategy. This would likely comprise segregation and stockpiling of the impacted soil within the site boundary and capping of the stockpile with a clay-rich soil cover and vegetation cover system to minimise rainwater infiltration.



#### 9.0 Principles and Limitations of Investigation

The investigation works herein are intended to develop and present sound, scientifically valid data concerning actual site conditions. Senversa does not seek or purport to provide legal or business

The following principles are an integral part of site contamination assessment practices and are intended to be referred to in resolving any ambiguity or exercising such discretion as is accorded the user or site assessor.

#### Table 9-1: Summary of General Principles and Limitations

#### Area

#### Field Observations and Analytical Results

#### Elimination of Uncertainty

Some uncertainty is inherent in all site investigations. Furthermore, any sample, either surface or subsurface, taken for chemical testing may or may not be representative of a larger population or area. Professional judgment and interpretation are inherent in the process, and even when exercised in accordance with objective scientific principles, uncertainty is inevitable. Additional assessment beyond that which was reasonably undertaken may reduce the uncertainty.

Failure to Detect Even when site investigation work is executed competently and in accordance with the appropriate Australian guidance, such as the National Environmental Protection (Assessment of Site Contamination) Amendment Measure ('the NEPM'), it must be recognised that certain conditions present especially difficult target analyte detection problems. Such conditions may include, but are not limited to, complex geological settings, unusual or generally poorly understood behaviour and fate characteristics of certain substances, complex, discontinuous, random, or heterogeneous distributions of existing target analytes, physical impediments to investigation imposed by the location of services, structures and other man-made objects, and the inherent limitations of assessment technologies.

#### Limitations of Information

The effectiveness of any site investigation may be compromised by limitations or defects in the information used to define the objectives and scope of the investigation, including inability to obtain information concerning historic site uses or prior site assessment activities despite the efforts of the user and assessor to obtain such information

#### Chemical **Analysis Error**

Chemical testing methods have inherent uncertainties and limitations. Serversa routinely seeks to require the laboratory to report any potential or actual problems experienced, or non-routine events which may have occurred during the testing, so that such problems can be considered in evaluating the data.

#### Level of **Assessment**

The investigation herein should not be considered to be an exhaustive assessment of environmental conditions on a property. There is a point at which the effort of information obtained and the time required to obtain it outweigh the benefit of the information gained and, in the context of private transactions and contractual responsibilities, may become a material detriment to the orderly conduct of business. If the presence of target analytes is confirmed on a property, the extent of further assessment is a function of the degree of confidence required and the degree of uncertainty acceptable in relation to the objectives of the assessment.

### Subsequent Inquiry

Comparison with The justification and adequacy of the investigation findings in light of the findings of a subsequent inquiry should be evaluated based on the reasonableness of judgments made at the time and under the circumstances in which they were made.

#### Data Useability

Investigation data generally only represent the site conditions at the time the data were generated. Therefore, the usability of data collected as part of this investigation may have a finite lifetime depending on the application and use being made of the data. In all respects, a future reader of this report should evaluate whether previously generated data are appropriate for any subsequent use beyond the original purpose for which they were collected or are otherwise subject to lifetime limits imposed by other laws, regulations or regulatory policies.



#### Area Field Observations and Analytical Results

Nature of Advice The investigation works herein are intended to develop and present sound, scientifically valid data concerning actual site conditions. Serversa does not seek or purport to provide legal or business advice.

Specific uncertainties and limitations noted for this investigation are as follows:

- The scope of work performed as part of this assessment may not be appropriate to satisfy the needs of any other person. Any other person's use of, or reliance on, the findings, conclusions, recommendations or any other material presented herein, is at that person's sole risk.
- The conclusions drawn in this assessment are based on current legislation, regulations and guidelines. Specific management strategies developed may require regulatory approvals prior to the commencement of works.



## 10.0 References

ANZECC & NHMRC, 1992. Australian and New Zealand Guidelines for the Assessment and Management of Contaminated Sites, Canberra: Australian and New Zealand Environment and Conservation Council and National Health and Medical Research Council.

EPA, 2009. *Industrial Waste Resource Guidelines (IWRG): Sampling and Analysis of Waters, Wastewaters, Soils and Wastes*, Publication IWRG701: Environment Protection Authority (Victoria).

EPA, 2021. Waste Disposal Categories – Characteristics and Thresholds, Publication 1828.2. Environment Protection Authority Victoria.

EPA, 2021. Notifiable Contamination Guideline – Duty to notify of contaminated land. Publication 2008.1. Environment Protection Authority Victoria.

Friebel, E. and Nadebaum, P., 2011. *Health Screening Levels for Petroleum Hydrocarbons in Soil and Groundwater. Part 1: Technical Development Document*, CRC CARE Technical Report no. 10: CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia.

NEPM, 1999. *National Environment Protection (Assessment of Site Contamination) Measure 1999,* Adelaide: National Environment Protection Council.

NEPC, 2013. *National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1)*, Canberra: National Environment Protection Council.

NEPC, 2013. *National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1): Schedule B1 Investigation Levels for Soil and Groundwater,* Canberra: National Environment Protection Council.

NEPC, 2013. *National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1): Schedule B2 Guideline on Site Characterisation*, Canberra: National Environment Protection Council.

NEPC, 2013. National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1): Schedule B5c Guideline on Ecological Investigation Levels for Arsenic, Chromium (III), Copper, DDT, Lead, Naphthalene, Nickel & Zinc, Canberra: National Environment Protection Council.

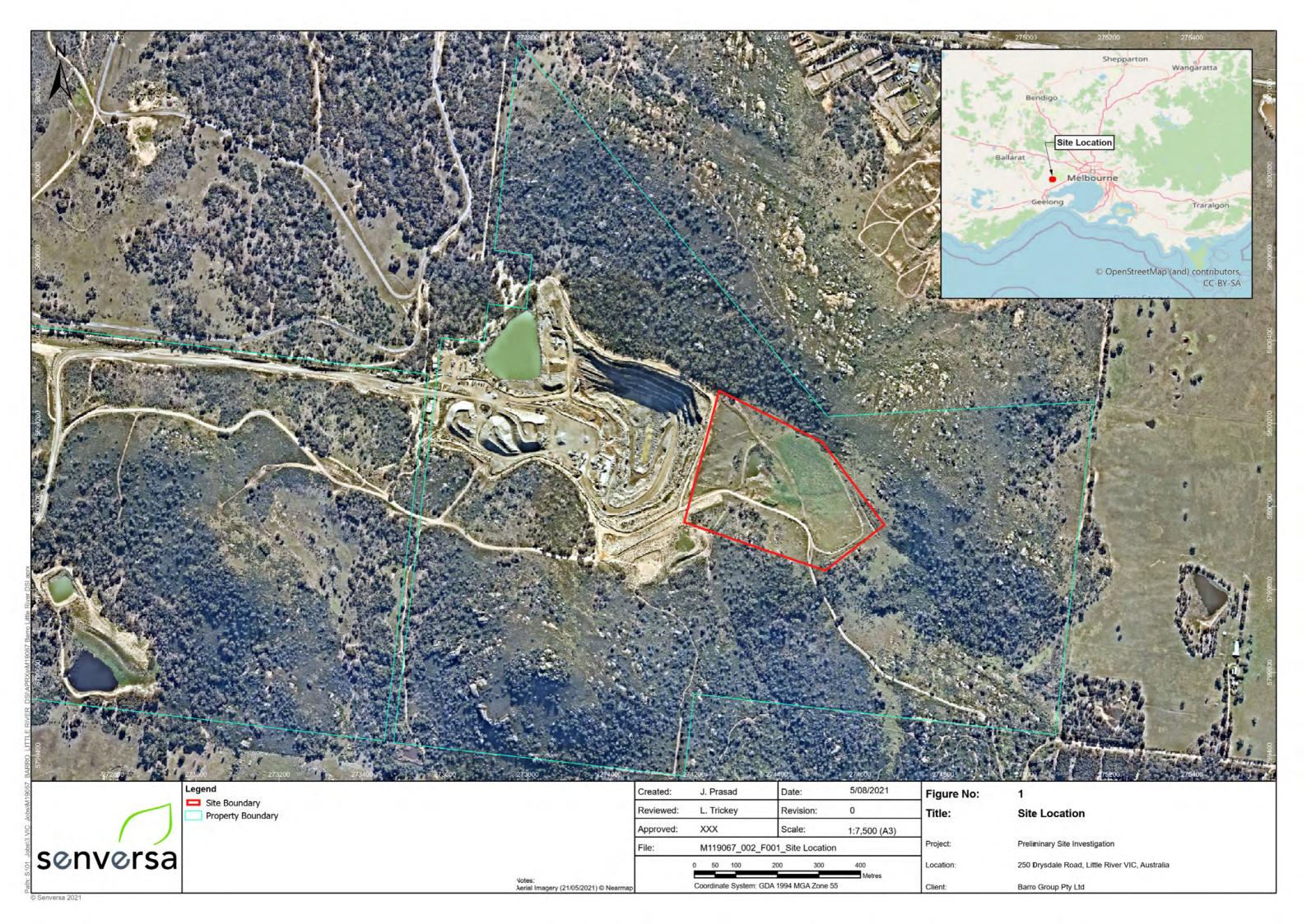
NEPC, 2013. *National Environment Protection (Assessment of Site Contamination) Amendment Measure 2013 (No. 1): Schedule B7 Guideline on Derivation of Health-Based Investigation Levels,* Canberra: National Environment Protection Council.

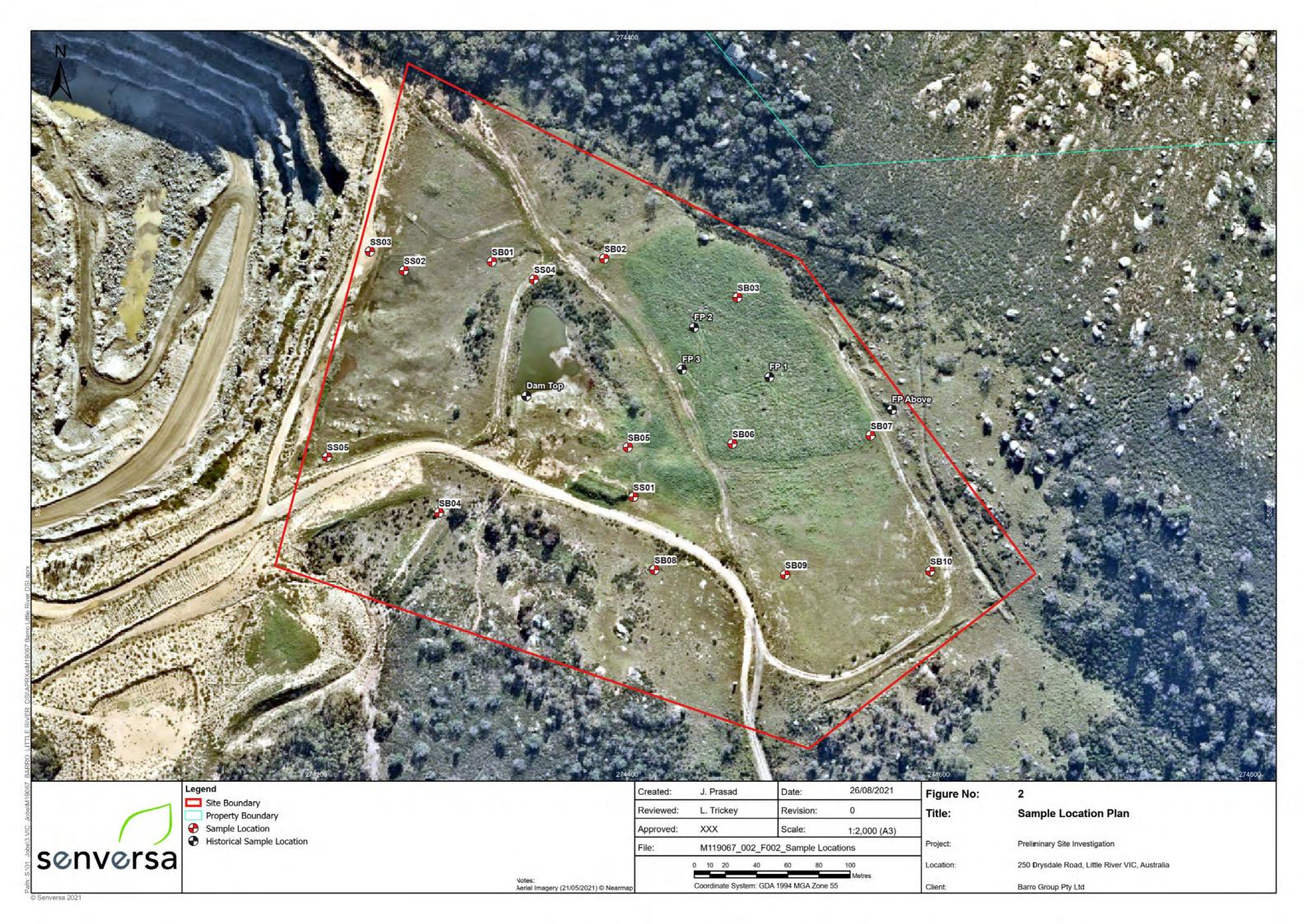
Standards Australia, 1999. *Guide to the Sampling and Investigation of Potentially Contaminated Soil. Part 2: Volatile Substances*, Australian Standard: AS4882.2-1999.

Standards Australia, 2005. *Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil, Part 1: Non-Volatile and Semi-Volatile Compounds, Australian Standard: AS4482.1-2005.* 

State of Victoria, 2017. Environment Protection Act 2017.

USEPA, 2000. *Guidance on Systematic Planning Using the Data Quality Objectives Process,* EPA QA/G-4: United States Environmental Protection Agency.


USEPA, 2002. *Guidance on Environmental Data Verification and Data Validation,* Washington D.C: United States Environmental Protection Agency.




# Figures

Figure 1: Site Location Plan

Figure 2: Sample Location Plan







## **Tables**

Table 1: Soil Analytical Results compared to Adopted Environmental Values

Table 2: Soil Analytical Results compared to Waste Disposal Categories – Characteristic Thresholds

sonvorsa

| Part   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021 | 9-2.0 SB03_0.1-0.2 SB03_0.5-0.6 SB03_0.9-1.0 SB03_1.4-2.0 SB04_0.1-0.2 QC01 QC02            | 10000         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------|
| Die   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021   1008/2021  |                                                                                             | SB04 0.5-0.6  |
| Net   Fig.   Lab Report No. (Biz15737   Miz115737    | 021 10/08/2021 10/08/2021 10/08/2021 10/08/2021 10/08/2021 10/08/2021 10/08/2021 10/08/2021 | 21 10/08/2021 |
| Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Fill Fill Natural Natural Fill Field D Interlab                                             | O Natural     |
| Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 737 EM2115737 EM2115737 EM2115737 EM2115737 EM2115737 EM2115737 816742                      | EM2115737     |
| Sulfur - Total as S (LECO)   %   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.03   0.01   0.01   0.03   0.01   0.03   0.01   0.01   0.03   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0.01   0. |                                                                                             |               |
| Physical Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             | 0.00          |
| Moisture Content   %   1   10.3   13.4   2.9   1.8   8.7   15.2   3.8   3.0   5.7   15.7   8.4   7.0   3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 0.03 0.32 0.08 0.03 0.01 0.02 -                                                          | 0.02          |
| Norganics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                             |               |
| Ammonia (as N)   mg/kg   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 5.7 15.7 8.4 7.0 3.6 4.6 4.                                                               | 9.5           |
| Nitrate (as N) mg/kg 0.1 1,900,000 <sup>41</sup> 0.8 0.3 0.4 0.2 <0.1 3.0 17.4 1.0 12.2 389 64.9 15.1 0.3 Nitrite (as N) mg/kg 0.1 120,000 <sup>41</sup> 0.4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                             | 0.0           |
| Nitrite (as N) mg/kg 0.1 120,000 <sup>81</sup> 0.4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |               |
| Total Oxidised Nitrogen (as N)   mg/kg   0.1   1.2   0.3   0.4   0.2   <0.1   3.0   17.4   1.2   12.3   389   64.9   15.1   0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |               |
| Total Kjeldahl Nitrogen   mg/kg   10   150   160   50   60   10,200   330   220   60   410   480   240   40   140   140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                             |               |
| Total Nitrogen (as N)   mg/kg   20   150   160   50   60   10,200   330   240   60   420   870   300   60   140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |               |
| Phosphorus (as P)   mg/kg   2   mg/kg   0.1   0.9   0.2   0.2   0.1   4.6   0.2   1.8   0.4   16.8   3.5   2.4   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   0.1   |                                                                                             |               |
| Ortho-phosphate (as P)         mg/kg         0.1         0.9         0.2         0.2         <0.1         4.6         0.2         1.8         0.4         16.8         3.5         2.4         0.1         0.1           Sulfur (as S)         mg/kg         5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                             |               |
| Sulfur (as S)         mg/kg         5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                             |               |
| Major lons         Galcium         mg/kg         5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                             |               |
| Calcium         mg/kg         5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - <th< td=""><td> 2</td><td>-</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                                                           | -             |
| Calcium (filtered)         mg/kg         5         50         <10         <10         <10         3,480         3,500         70         20         20         3,660         320         30         30           Magnesium         mg/kg         5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                             |               |
| Magnesium   mg/kg   5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                             |               |
| Magnesium (filtered)         mg/kg         5         30         40         40         20         100         230         50         50         10         690         240         50         10           Potassium         mg/kg         5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                             | 110           |
| Potassium         mg/kg         5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,,,                                                                                         |               |
| Potassium (filtered)         mg/kg         5         20         20         <10         10         600         1,730         210         30         160         2,330         980         130         20           Sodium         mg/kg         5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                             | .00           |
| Sodium         mg/kg         5         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · ·                                                                                       |               |
| Sodium (filtered) mg/kg 5 70 490 140 130 230 500 180 210 110 930 560 310 30 Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                             | 80            |
| Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12                                                                                          |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 110 930 560 310 30 40 -                                                                   | 250           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                             |               |
| Boron mg/kg 10 300,000 <sup>62</sup> <50 <50 <50 <50 <50 <50 <50 <50 <50 <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 <50 <50 <50 <50 <50 <50 <1                                                                | <50           |
| Cadmium mg/kg 0.4 900 <sup>62</sup> <1 <1 <1 <1 <1 2 8 <1 <1 <1 <1 <1 <1 <1 <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                           | 4 <1          |
| Copper mg/kg 5 240,000 <sup>e2</sup> 95 <sup>e3</sup> <5 <5 <5 5 14 6 <5 6 <5 19 14 19 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <5 19 14 19 6 5 1                                                                           | <5            |
| Manganese mg/kg 5 60,000 <sup>#2</sup> 19 69 233 313 228 193 22 259 110 146 172 412 149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9 110 146 172 412 149 174 20                                                                | 64            |
| Molybdenum mg/kg 2 5,800 <sup>61</sup> <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             |               |
| Zinc mg/kg 5 400,000 <sup>52</sup> 150 <sup>53</sup> <5 15 38 49 108 54 <5 41 8 122 32 65 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 8 122 32 65 19 19 3                                                                       | 11            |

Comments
#1 USEPA RSLs (May 2020 Update) - Industrial.
#2 NEPC (2013) - HIL 'D'.
#3 NEPC (2013) EIL - Commercial and Industrial. Initial screening value applicable to all aged soils (see text). Derive site-specific value if contamination is fresh (<2 years) or if EILs are exceeded.



Sample Type Fill Natural Natural Field\_D Interlab\_D Natural Natural Natural Natural

|                                |       |          |                       | Gampie 13pc       |           |           | rtatarar  |           |                | Hatarai   |           |           | i ioid_D                                         | intenab_b | rtaturar  | raturar   |           | rtatarar  | raturar                                          |           |
|--------------------------------|-------|----------|-----------------------|-------------------|-----------|-----------|-----------|-----------|----------------|-----------|-----------|-----------|--------------------------------------------------|-----------|-----------|-----------|-----------|-----------|--------------------------------------------------|-----------|
|                                |       |          |                       | Lab Report No.    | EM2115737 | EM2115737 | EM2115737 | EM2115737 | EM2115737      | EM2115737 | EM2115737 | EM2115737 | EM2115737                                        | 816742    | EM2115737 | EM2115737 | EM2115737 | EM2115737 | EM2115737                                        | EM2115737 |
|                                |       |          | NEPC 2013 - Human     | NEPC 2013 -       |           |           |           |           |                |           |           |           |                                                  |           |           |           |           |           | •                                                |           |
|                                |       |          | Health Setting 'D' -  | Maintenance of    |           |           |           |           |                |           |           |           |                                                  |           |           |           |           |           |                                                  |           |
|                                | Unit  | EQL      | Commercial /          | Ecosystems -      |           |           |           |           |                |           |           |           |                                                  |           |           |           |           |           |                                                  |           |
|                                |       |          | Industrial            | Commercial /      |           |           |           |           |                |           |           |           |                                                  |           |           |           |           |           |                                                  |           |
| NA                             |       |          |                       |                   |           |           |           |           |                |           |           |           |                                                  |           |           |           |           |           |                                                  |           |
| Sulfur - Total as S (LECO)     | %     | 0.01     |                       |                   | 1.20      | 5.13      | 0.03      | 0.04      | 0.30           | 0.93      | 3.36      | 4.11      | 0.86                                             | -         | 0.26      | 0.03      | 0.04      | 0.02      | 0.01                                             | 1.08      |
| Physical Parameters            | 7.    | 0.01     |                       |                   | 20        | 0.10      | 0.00      | 0.0 .     | 0.00           | 0.00      | 0.00      |           | 0.00                                             | 1         | 0.20      | 0.00      | 0.0.      | 0.02      | 0.01                                             |           |
| Moisture Content               | %     | 1        |                       |                   | 14.0      | 17.1      | 7.4       | 8.8       | 15.8           | 35.5      | 16.8      | 8.8       | 8.1                                              | 9.9       | 14.2      | 7.2       | 4.8       | 3.8       | 2.6                                              | 13.7      |
| Inorganics                     |       |          |                       |                   |           | -         |           |           | 10.0           | -         | 10.0      |           | -                                                |           |           | 1         |           |           |                                                  | 1         |
| Ammonia (as N)                 | mg/kg | 5        |                       |                   | <20       | <20       | <20       | <20       | 20             | 240       | <20       | <20       | <20                                              | <5        | <20       | <20       | <20       | <20       | <20                                              | <20       |
| Nitrate (as N)                 | mg/kg | 0.1      | 1,900,000#1           |                   | 23.8      | <0.1      | 1.7       | 9.8       | 467            | 1.860     | 5.0       | 0.1       | 0.1                                              | <5        | 0.4       | 0.2       | 2.9       | 0.8       | 0.3                                              | 0.1       |
| Nitrite (as N)                 | mg/kg | 0.1      | 120,000 <sup>#1</sup> |                   | 18.9      | 0.2       | <0.1      | 0.4       | 3.2            | 0.3       | 0.2       | <0.1      | <0.1                                             | <5        | 0.2       | <0.1      | 0.1       | 0.4       | <0.1                                             | <0.1      |
| Total Oxidised Nitrogen (as N) | mg/kg | 0.1      | 120,000               |                   | 42.7      | 0.2       | 1.7       | 10.2      | 470            | 1.860     | 5.2       | 0.1       | 0.1                                              | -         | 0.2       | 0.2       | 3.0       | 1.2       | 0.3                                              | 0.1       |
| Total Kjeldahl Nitrogen        | mg/kg | 10       |                       |                   | 1,350     | 180       | 110       | 1.160     | 15,500         | 17.400    | 220       | 260       | 220                                              | 880       | 180       | 150       | 290       | 150       | 100                                              | 540       |
| Total Nitrogen (as N)          | mg/kg | 20       |                       |                   | 1,390     | 180       | 110       | 1,170     | 16,000         | 19,300    | 220       | 260       | 220                                              | - 000     | 180       | 150       | 290       | 150       | 100                                              | 540       |
| Phosphorus (as P)              | mg/kg | 20       |                       |                   | 15,200    | 9,180     | 1,520     | 2,200     | 3,280          | 3,510     | 2,630     | 3,850     | 2,240                                            | 4,200     | 785       | 400       | 504       | 168       | 297                                              | 8,570     |
| Ortho-phosphate (as P)         | mg/kg | 0.1      |                       |                   | 4.4       | 7.1       | 54.0      | 18.8      | 9.3            | 74.7      | 16.2      | 50.8      | 66.9                                             | 39        | 41.9      | 0.2       | 1.2       | 1.1       | 0.5                                              | 274       |
| Sulfur (as S)                  | mg/kg | 5        |                       |                   | 4.4       | 7.1       | 34.0      | -         | 5.5            | 74.7      | 10.2      | 30.0      | - 00.9                                           | 39,000    | 41.5      | 0.2       | 1.2       | 1.1       | 0.5                                              | -         |
| Major Ions                     | mg/kg |          |                       |                   | _         | +         | + -       |           | <u> </u>       | 1         |           |           | <u> </u>                                         | 33,000    | 1         | +         | _         | 1         | 1                                                | +         |
| Calcium                        | mg/kg | 5        |                       |                   |           | + -       | + -       | -         | <del>  .</del> | _         | -         | -         | <del>                                     </del> | 63,000    | _         | + -       | + .       | + -       | <del>                                     </del> | -         |
| Calcium (filtered)             | mg/kg | 5        |                       |                   | 3,930     | 3,910     | 40        | 160       | 3.360          | 5.950     | 3.970     | 3,720     | 3,570                                            | -         | 60        | 20        | 130       | 30        | <10                                              | 4,060     |
| Magnesium                      | mg/kg | 5        |                       |                   | 5,550     | 3,310     |           | -         |                | 3,330     | 3,370     | 5,720     |                                                  | 800       |           | - 20      | - 130     | - 30      | - 10                                             | -,000     |
| Magnesium (filtered)           | mg/kg | 5        |                       |                   | 180       | 340       | 50        | 20        | 540            | 1.940     | 170       | 60        | 90                                               |           | 20        | <10       | 20        | 20        | <10                                              | 20        |
| Potassium                      | mg/kg | 5        |                       |                   | -         | 340       | - 30      | - 20      | - 340          | 1,540     | - 170     |           | -                                                | 1,500     |           | - 10      | - 20      |           | - 10                                             | - 20      |
| Potassium (filtered)           | mg/kg | 5        |                       |                   | 530       | 1,220     | 330       | 160       | 1,280          | 6,820     | 230       | 220       | 310                                              |           | 210       | 100       | 60        | 30        | 10                                               | 80        |
| Sodium                         | mg/kg | 5        |                       |                   | -         | - 1,220   | -         | -         | - 1,200        |           | -         | -         | -                                                | 390       |           | -         |           |           | -                                                |           |
| Sodium (filtered)              | mg/kg | 5        |                       |                   | 150       | 850       | 300       | 60        | 440            | 2,390     | 70        | 70        | 110                                              | -         | 80        | 80        | 30        | 30        | 10                                               | 80        |
| Metals                         | 99    | <u> </u> |                       |                   | .00       |           |           | - 55      | 1              | 2,000     |           |           |                                                  | 1         | 1 00      | +         | + **      | - 55      |                                                  | +         |
| Boron                          | mg/kg | 10       | 300,000#2             |                   | <50       | <50       | <50       | <50       | <50            | <50       | <50       | <50       | <50                                              | <10       | <50       | <50       | <50       | <50       | <50                                              | <50       |
| Cadmium                        | mg/kg | 0.4      | 900 <sup>#2</sup>     |                   | 5         | 4         | <1        | <1        | <1             | <1        | <1        | 2         | <1                                               | 1.8       | <1        | <1        | <1        | <1        | <1                                               | 2         |
| Copper                         | mg/kg | 5        | 240,000#2             | 95 <sup>#3</sup>  | 29        | <5        | <5        | <5        | 24             | 79        | <5        | <5        | <5                                               | <5        | 9         | 23        | 9         | 8         | 0                                                | <5        |
|                                |       | +        | 60,000#2              | 50                |           |           |           |           |                |           |           |           |                                                  |           |           |           | ,         |           | 200                                              |           |
| Manganese                      | mg/kg | 5        |                       |                   | 278       | 108       | 19        | 174       | 233            | 178       | 207       | 96        | 65                                               | 71        | 302       | 334       | 404       | 267       | 306                                              | 72        |
| Molybdenum                     | mg/kg | 2        | 5,800#1               | #3                | <2        | <2        | <2        | <2        | <2             | <2        | <2        | <2        | <2                                               | <5        | <2        | <2        | <2        | <2        | <2                                               | <2        |
| Zinc                           | mg/kg | 5        | 400,000#2             | 150 <sup>#3</sup> | 44        | 25        | 9         | 22        | 151            | 190       | 17        | 19        | 7                                                | 15        | 40        | 51        | 44        | 34        | 42                                               | 13        |

Comments
#1 USEPA RSLs (May 2020 Update) - Industrial.
#2 NEPC (2013) - HIL 'D'.
#3 NEPC (2013) EIL - Commercial and Industrial. Initial screening value applicable to all aged soils (se

|    | Location Code  |              | SB10         |              | SS01       | SS02       | SS03       | SS04       | SS05       |
|----|----------------|--------------|--------------|--------------|------------|------------|------------|------------|------------|
|    | Field ID       | SB10_0.1-0.2 | SB10_0.5-0.6 | SB10_0.9-1.0 | SS01       | SS02       | SS03       | SS04       | SS05       |
|    | Date           | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021 | 10/08/2021 | 10/08/2021 | 10/08/2021 | 10/08/2021 |
|    | Sample Type    | Fill         | Natural      | Natural      | Natural    | Fill       | Fill       | Fill       | Fill       |
|    | Lab Report No. | EM2115737    | EM2115737    | EM2115737    | EM2115737  | EM2115737  | EM2115737  | EM2115737  | EM2115737  |
| ın | NEPC 2013 -    |              |              |              |            |            |            |            |            |
| -  | Maintenance of |              |              |              |            |            |            |            |            |
|    | Ecosystems -   |              |              |              |            |            |            |            |            |

|                                |       |      |                                                                         | Lab Report No.                                                | EM2115737 |
|--------------------------------|-------|------|-------------------------------------------------------------------------|---------------------------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                | Unit  | EQL  | NEPC 2013 - Human<br>Health Setting 'D' -<br>Commercial /<br>Industrial | NEPC 2013 -<br>Maintenance of<br>Ecosystems -<br>Commercial / |           |           |           |           |           |           |           |           |
| NA                             |       |      |                                                                         |                                                               |           |           |           |           |           |           |           |           |
| Sulfur - Total as S (LECO)     | %     | 0.01 |                                                                         |                                                               | 3.12      | 0.07      | 0.27      | 0.01      | 0.04      | 0.01      | 0.02      | <0.01     |
| Physical Parameters            |       |      |                                                                         |                                                               |           |           |           |           |           |           |           |           |
| Moisture Content               | %     | 1    |                                                                         |                                                               | 20.3      | 7.9       | 7.3       | <1.0      | 18.4      | 5.4       | 2.5       | 2.6       |
| Inorganics                     |       |      |                                                                         |                                                               |           |           |           |           |           |           |           |           |
| Ammonia (as N)                 | mg/kg | 5    |                                                                         |                                                               | <20       | <20       | <20       | <20       | <20       | <20       | <20       | <20       |
| Nitrate (as N)                 | mg/kg | 0.1  | 1,900,000 <sup>#1</sup>                                                 |                                                               | <0.1      | 0.1       | 0.3       | 10.6      | 0.8       | 2.2       | 0.2       | 0.1       |
| Nitrite (as N)                 | mg/kg | 0.1  | 120,000 <sup>#1</sup>                                                   |                                                               | <0.1      | < 0.1     | < 0.1     | 0.5       | 0.2       | 0.7       | < 0.1     | < 0.1     |
| Total Oxidised Nitrogen (as N) | mg/kg | 0.1  |                                                                         |                                                               | <0.1      | 0.1       | 0.3       | 11.1      | 1.0       | 2.9       | 0.2       | 0.1       |
| Total Kjeldahl Nitrogen        | mg/kg | 10   |                                                                         |                                                               | 340       | 180       | 340       | 340       | 990       | 90        | 420       | <20       |
| Total Nitrogen (as N)          | mg/kg | 20   |                                                                         |                                                               | 340       | 180       | 340       | 350       | 990       | 90        | 420       | <20       |
| Phosphorus (as P)              | mg/kg | 2    |                                                                         |                                                               | 8,460     | 408       | 216       | 109       | 199       | 113       | 168       | 69        |
| Ortho-phosphate (as P)         | mg/kg | 0.1  |                                                                         |                                                               | 145       | 18.9      | 8.6       | 0.6       | 2.4       | 1.1       | 5.0       | 0.1       |
| Sulfur (as S)                  | mg/kg | 5    |                                                                         |                                                               | -         | -         | -         | -         | -         | -         | -         | -         |
| Major lons                     |       |      |                                                                         |                                                               |           |           |           |           |           |           |           |           |
| Calcium                        | mg/kg | 5    |                                                                         |                                                               | -         | -         | -         | -         | -         | -         | -         | -         |
| Calcium (filtered)             | mg/kg | 5    |                                                                         |                                                               | 4,180     | 200       | 40        | 10        | 30        | 20        | 40        | <10       |
| Magnesium                      | mg/kg | 5    |                                                                         |                                                               | -         | -         | -         | -         | -         | -         | -         | -         |
| Magnesium (filtered)           | mg/kg | 5    |                                                                         |                                                               | 60        | 40        | 10        | <10       | 20        | 60        | <10       | <10       |
| Potassium                      | mg/kg | 5    |                                                                         |                                                               | -         | -         | -         | -         | -         | -         | -         | -         |
| Potassium (filtered)           | mg/kg | 5    |                                                                         |                                                               | 310       | 220       | 240       | 20        | 50        | 30        | 20        | <10       |
| Sodium                         | mg/kg | 5    |                                                                         |                                                               | -         | -         | -         | -         | -         | -         | -         | -         |
| Sodium (filtered)              | mg/kg | 5    |                                                                         |                                                               | 110       | 60        | 90        | 20        | 50        | 90        | 10        | 20        |
| Metals                         |       |      | #0                                                                      |                                                               |           |           |           |           |           |           |           |           |
| Boron                          | mg/kg | 10   | 300,000#2                                                               |                                                               | <50       | <50       | <50       | <50       | <50       | <50       | <50       | <50       |
| Cadmium                        | mg/kg | 0.4  | 900 <sup>#2</sup>                                                       |                                                               | 3         | <1        | <1        | <1        | <1        | <1        | <1        | <1        |
| Copper                         | mg/kg | 5    | 240,000#2                                                               | 95 <sup>#3</sup>                                              | 5         | <5        | <5        | <5        | <5        | <5        | <5        | <5        |
| Manganese                      | mg/kg | 5    | 60,000 <sup>#2</sup>                                                    |                                                               | 90        | 66        | 67        | 108       | 48        | 56        | 40        | 19        |
| Molybdenum                     | mg/kg | 2    | 5,800 <sup>#1</sup>                                                     |                                                               | <2        | <2        | <2        | <2        | <2        | <2        | <2        | <2        |
| Zinc                           | mg/kg | 5    | 400,000#2                                                               | 150 <sup>#3</sup>                                             | 24        | 5         | 7         | 9         | 6         | 8         | <5        | <5        |

Comments
#1 USEPA RSLs (May 2020 Update) - Industrial.
#2 NEPC (2013) - HIL 'D'.
#3 NEPC (2013) EIL - Commercial and Industrial. Initial screening value applicable to all aged soils (se



| Location Code  | SB01_0.1-0.2 | SB01_0.5-0.6 | SB01_0.9-1.0 | SB01_1.1-1.2 | SB02_0.1-0.2 | SB02_0.5-0.6 | SB02_0.9-1.0 | SB02_1.9-2.0 | SB03_0.1-0.2 | SB03_0.5-0.6 | SB03_0.9-1.0 | SB03_1.4-2.0 |
|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Field ID       | SB01_0.1-0.2 | SB01_0.5-0.6 | SB01_0.9-1.0 | SB01_1.1-1.2 | SB02_0.1-0.2 | SB02_0.5-0.6 | SB02_0.9-1.0 | SB02_1.9-2.0 | SB03_0.1-0.2 | SB03_0.5-0.6 | SB03_0.9-1.0 | SB03_1.4-2.0 |
| Date           | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   |
| Sample Type    | Fill         | Fill         | Fill         | Fill         | Normal       | Fill         | Fill         | Natural      | Fill         | Fill         | Natural      | Natural      |
| Lab Report No. | FM2115737    |

|                                |       |      |                                   |                                            |                                            | Lab Report No.                             | LIVIZITIOTOT | EIVIZ113/3/ | LIVIZITIOTOT | EIVIZ I 13/3/ | LIVIZ I 13/3/ | LIVIZ I 13737 | LIVIZ I 13/3/ | LIVIZITIOTOT | LIVIZ I 13737 | EIVIZ 1 13/3/ | LIVIZITIOTOT | LIVIZ I 13737 |
|--------------------------------|-------|------|-----------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|--------------|-------------|--------------|---------------|---------------|---------------|---------------|--------------|---------------|---------------|--------------|---------------|
|                                | Unit  | EQL  | Fill material upper limit<br>(TC) | Waste disposal category D upper limit (TC) | Waste disposal category C upper limit (TC) | Waste disposal category B upper limit (TC) |              | _           |              | _             |               |               |               | _            | _             | _             |              | _             |
| NA                             |       |      |                                   |                                            |                                            |                                            |              |             |              |               |               |               |               |              |               |               |              |               |
| Sulfur - Total as S (LECO)     | %     | 0.01 |                                   |                                            |                                            |                                            | 0.01         | 0.03        | < 0.01       | 0.03          | 0.16          | 8.26          | 0.03          | 0.01         | 0.03          | 0.32          | 0.08         | 0.03          |
| Physical Parameters            |       |      |                                   |                                            |                                            |                                            |              |             |              |               |               |               |               |              |               |               |              |               |
| Moisture Content               | %     | 1    |                                   |                                            |                                            |                                            | 10.3         | 13.4        | 2.9          | 1.8           | 8.7           | 15.2          | 3.8           | 3.0          | 5.7           | 15.7          | 8.4          | 7.0           |
| norganics                      |       |      |                                   |                                            |                                            |                                            |              |             |              |               |               |               |               |              |               |               |              |               |
| Ammonia (as N)                 | mg/kg | 5    |                                   |                                            |                                            |                                            | <20          | <20         | <20          | <20           | <20           | <20           | <20           | <20          | <20           | <20           | <20          | <20           |
| Nitrate (as N)                 | mg/kg | 0.1  |                                   |                                            |                                            |                                            | 0.8          | 0.3         | 0.4          | 0.2           | < 0.1         | 3.0           | 17.4          | 1.0          | 12.2          | 389           | 64.9         | 15.1          |
| Nitrite (as N)                 | mg/kg | 0.1  |                                   |                                            |                                            |                                            | 0.4          | < 0.1       | < 0.1        | < 0.1         | < 0.1         | < 0.1         | < 0.1         | 0.2          | 0.1           | 0.3           | < 0.1        | < 0.1         |
| Total Oxidised Nitrogen (as N) | mg/kg | 0.1  |                                   |                                            |                                            |                                            | 1.2          | 0.3         | 0.4          | 0.2           | < 0.1         | 3.0           | 17.4          | 1.2          | 12.3          | 389           | 64.9         | 15.1          |
| Total Kjeldahl Nitrogen        | mg/kg | 10   |                                   |                                            |                                            |                                            | 150          | 160         | 50           | 60            | 10,200        | 330           | 220           | 60           | 410           | 480           | 240          | 40            |
| Total Nitrogen (as N)          | mg/kg | 20   |                                   |                                            |                                            |                                            | 150          | 160         | 50           | 60            | 10,200        | 330           | 240           | 60           | 420           | 870           | 300          | 60            |
| Phosphorus (as P)              | mg/kg | 2    |                                   |                                            |                                            |                                            | 72           | 91          | 96           | 105           | 3,930         | 3,830         | 128           | 92           | 166           | 109           | 126          | 207           |
| Ortho-phosphate (as P)         | mg/kg | 0.1  |                                   |                                            |                                            |                                            | 0.9          | 0.2         | 0.2          | < 0.1         | 4.6           | 0.2           | 1.8           | 0.4          | 16.8          | 3.5           | 2.4          | 0.1           |
| Sulfur (as S)                  | mg/kg | 5    |                                   |                                            |                                            |                                            | -            | -           | -            | -             | -             | -             | -             | -            | -             | -             | -            | -             |
| Major Ions                     |       |      |                                   |                                            |                                            |                                            |              |             |              |               |               |               |               | 1            |               |               |              | 1             |
| Calcium                        | mg/kg | 5    |                                   |                                            |                                            |                                            | -            | -           | -            | -             | -             | -             | -             | -            | -             | -             | -            | -             |
| Calcium (filtered)             | mg/kg | 5    |                                   |                                            |                                            |                                            | 50           | <10         | <10          | <10           | 3,480         | 3,500         | 70            | 20           | 20            | 3,660         | 320          | 30            |
| Magnesium                      | mg/kg | 5    |                                   |                                            |                                            |                                            | -            | -           | -            | -             | -             | -             | -             | -            | -             | -             | -            | -             |
| Magnesium (filtered)           | mg/kg | 5    |                                   |                                            |                                            |                                            | 30           | 40          | 40           | 20            | 100           | 230           | 50            | 50           | 10            | 690           | 240          | 50            |
| Potassium                      | mg/kg | 5    |                                   |                                            |                                            |                                            | -            | -           | -            | -             | -             | -             | -             | -            | -             | -             | -            | -             |
| Potassium (filtered)           | mg/kg | 5    |                                   |                                            |                                            |                                            | 20           | 20          | <10          | 10            | 600           | 1,730         | 210           | 30           | 160           | 2,330         | 980          | 130           |
| Sodium                         | mg/kg | 5    |                                   |                                            |                                            |                                            | -            | -           | -            | -             | -             | -             | -             | -            | -             | -             | -            | -             |
| Sodium (filtered)              | mg/kg | 5    |                                   |                                            |                                            |                                            | 70           | 490         | 140          | 130           | 230           | 500           | 180           | 210          | 110           | 930           | 560          | 310           |
| Metals                         |       |      |                                   |                                            |                                            |                                            |              |             |              |               |               |               |               |              |               |               |              | 1             |
| Boron                          | mg/kg | 10   |                                   | 15,000                                     | 15,000                                     | 60,000                                     | <50          | <50         | <50          | <50           | <50           | <50           | <50           | <50          | <50           | <50           | <50          | <50           |
| Cadmium                        | mg/kg | 0.4  | 3                                 | 100                                        | 100                                        | 400                                        | <1           | <1          | <1           | <1            | 2             | 8             | <1            | <1           | <1            | 1             | <1           | <1            |
| Copper                         | mg/kg | 5    | 100                               | 5,000                                      | 5.000                                      | 20.000                                     | <5           | <5          | <5           | 5             | 14            | 6             | <5            | 6            | <5            | 19            | 14           | 19            |
| Manganese                      | mg/kg | 5    |                                   | .,                                         | .,,                                        | ,,,,,,                                     | 19           | 69          | 233          | 313           | 228           | 193           | 22            | 259          | 110           | 146           | 172          | 412           |
| Molybdenum                     | mg/kg | 2    | 40                                | 1.000                                      | 1,000                                      | 4.000                                      | <2           | <2          | <2           | <2            | <2            | <2            | <2            | <2           | <2            | <2            | <2           | <2            |
| Zinc                           | mg/kg | 5    | 200                               | 35.000                                     | 35,000                                     | 140.000                                    | <5           | 15          | 38           | 49            | 108           | 54            | <5            | 41           | 8             | 122           | 32           | 65            |

Table 2: Soil Analytical Results vs Waste Disposal Categories - Characteristic Thresholds M19067
Preliminary Site Investigation
Part of 250 Drysdale Road, Little River

s⊘nv⊘rsa

|   | Location Code |              | SB04_0.1-0.2 |            | SB04_0.5-0.6 | SB05_0.1-0.2 | SB05_0.5-0.6 | SB05_1.1-1.2 | SB06_0.1-0.2 | SB06_0.5-0.6 | SB06_1.0-1.1 | SB07_0.1-0.2 |              | SB07_0.5-0.6 |            | SB07_0.9-1.0 | SB07_1.5-1.5 |
|---|---------------|--------------|--------------|------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|--------------|--------------|
| Γ | Field ID      | SB04_0.1-0.2 | QC01         | QC02       | SB04_0.5-0.6 | SB05_0.1-0.2 | SB05_0.5-0.6 | SB05_1.1-1.2 | SB06_0.1-0.2 | SB06_0.5-0.6 | SB06_1.0-1.1 | SB07_0.1-0.2 | SB07_0.5-0.6 | QC03         | QC04       | SB07_0.9-1.0 | SB07_1.5-1.5 |
| Γ | Date          | 10/08/2021   | 10/08/2021   | 10/08/2021 | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021 | 10/08/2021   | 10/08/2021   |
| Γ | Sample Type   | Fill         | Field_D      | Interlab_D | Natural      | Fill         | Fill         | Natural      | Fill         | Fill         | Natural      | Fill         | Fill         | Field_D      | Interlab_D | Natural      | Natural      |
| Г | Lah Report No | FM2115737    | FM2115737    | 816742     | FM2115737    | 816742     | FM2115737    | FM2115737    |

|                                |       |      |                                |                                            |                                            | =us itopoitite.                            | E.M.E. 1 10 1 0 1 | 21112110101 | 0.0.12 | 2.0.2.1.0.0. | 2.0.2.1.0.0. | 2.0.2.1.0.0. | 2.0.2.1.0.0. | 2.0.2.1.0.0. | E.II.E 1 10101 | 2.0.2.1.0.0. | 2.012.1.07.07 | EIIIE I IOI OI | EE    | 0.01.12 | E.II.E 1 10101 | E.II.E 1 10101 |
|--------------------------------|-------|------|--------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------|-------------|--------|--------------|--------------|--------------|--------------|--------------|----------------|--------------|---------------|----------------|-------|---------|----------------|----------------|
|                                | Unit  | EQL  | Fill material upper limit (TC) | Waste disposal category D upper limit (TC) | Waste disposal category C upper limit (TC) | Waste disposal category B upper limit (TC) |                   |             |        |              |              |              |              |              |                |              |               |                |       |         |                |                |
| NA                             |       |      |                                |                                            |                                            |                                            |                   |             |        |              |              |              |              |              |                |              |               |                |       |         |                |                |
| Sulfur - Total as S (LECO)     | %     | 0.01 |                                |                                            |                                            |                                            | 0.01              | 0.02        | -      | 0.02         | 1.20         | 5.13         | 0.03         | 0.04         | 0.30           | 0.93         | 3.36          | 4.11           | 0.86  | -       | 0.26           | 0.03           |
| Physical Parameters            |       |      |                                |                                            |                                            |                                            |                   |             |        |              |              |              |              |              |                |              |               |                |       |         |                |                |
| Moisture Content               | %     | 1    |                                |                                            |                                            |                                            | 3.6               | 4.6         | 4.2    | 9.5          | 14.0         | 17.1         | 7.4          | 8.8          | 15.8           | 35.5         | 16.8          | 8.8            | 8.1   | 9.9     | 14.2           | 7.2            |
| Inorganics                     |       |      |                                |                                            |                                            |                                            |                   |             |        |              |              |              |              |              |                |              |               |                |       |         |                |                |
| Ammonia (as N)                 | mg/kg | 5    |                                |                                            |                                            |                                            | <20               | <20         | 5.9    | <20          | <20          | <20          | <20          | <20          | 20             | 240          | <20           | <20            | <20   | <5      | <20            | <20            |
| Nitrate (as N)                 | mg/kg | 0.1  |                                |                                            |                                            |                                            | 0.3               | 0.3         | <5     | 14.7         | 23.8         | <0.1         | 1.7          | 9.8          | 467            | 1,860        | 5.0           | 0.1            | 0.1   | <5      | 0.4            | 0.2            |
| Nitrite (as N)                 | mg/kg | 0.1  |                                |                                            |                                            |                                            | < 0.1             | <0.1        | <5     | 2.3          | 18.9         | 0.2          | < 0.1        | 0.4          | 3.2            | 0.3          | 0.2           | < 0.1          | <0.1  | <5      | 0.2            | < 0.1          |
| Total Oxidised Nitrogen (as N) | mg/kg | 0.1  |                                |                                            |                                            |                                            | 0.3               | 0.3         | -      | 17.0         | 42.7         | 0.2          | 1.7          | 10.2         | 470            | 1,860        | 5.2           | 0.1            | 0.1   | -       | 0.6            | 0.2            |
| Total Kjeldahl Nitrogen        | mg/kg | 10   |                                |                                            |                                            |                                            | 140               | 480         | 150    | 240          | 1,350        | 180          | 110          | 1,160        | 15,500         | 17,400       | 220           | 260            | 220   | 880     | 180            | 150            |
| Total Nitrogen (as N)          | mg/kg | 20   |                                |                                            |                                            |                                            | 140               | 480         | -      | 260          | 1,390        | 180          | 110          | 1,170        | 16,000         | 19,300       | 220           | 260            | 220   | -       | 180            | 150            |
| Phosphorus (as P)              | mg/kg | 2    |                                |                                            |                                            |                                            | 194               | 116         | 45     | 108          | 15,200       | 9,180        | 1,520        | 2,200        | 3,280          | 3,510        | 2,630         | 3,850          | 2,240 | 4,200   | 785            | 400            |
| Ortho-phosphate (as P)         | mg/kg | 0.1  |                                |                                            |                                            |                                            | 0.1               | < 0.1       | <10    | 8.6          | 4.4          | 7.1          | 54.0         | 18.8         | 9.3            | 74.7         | 16.2          | 50.8           | 66.9  | 39      | 41.9           | 0.2            |
| Sulfur (as S)                  | mg/kg | 5    |                                |                                            |                                            |                                            | -                 | -           | 28     | -            | -            | -            | -            | -            | -              | -            | -             | -              | -     | 39,000  | -              | -              |
| Major Ions                     |       |      |                                |                                            |                                            |                                            |                   |             |        |              |              |              |              |              |                |              |               |                |       |         |                | 1              |
| Calcium                        | mg/kg | 5    |                                |                                            |                                            |                                            | -                 | -           | 620    | -            | -            | -            | -            | -            | -              | -            | -             | -              | -     | 63,000  | -              | -              |
| Calcium (filtered)             | mg/kg | 5    |                                |                                            |                                            |                                            | 30                | 110         | -      | 110          | 3,930        | 3,910        | 40           | 160          | 3,360          | 5,950        | 3,970         | 3,720          | 3,570 | -       | 60             | 20             |
| Magnesium                      | mg/kg | 5    |                                |                                            |                                            |                                            | -                 | -           | 4,600  | -            | -            | -            | -            | -            | -              | -            | -             | -              | -     | 800     | -              | -              |
| Magnesium (filtered)           | mg/kg | 5    |                                |                                            |                                            |                                            | 10                | 20          | -      | 160          | 180          | 340          | 50           | 20           | 540            | 1,940        | 170           | 60             | 90    | -       | 20             | <10            |
| Potassium                      | mg/kg | 5    |                                |                                            |                                            |                                            | -                 | -           | 4,200  | -            | -            | -            | -            | -            | -              | -            | -             | -              | -     | 1,500   | -              | -              |
| Potassium (filtered)           | mg/kg | 5    |                                |                                            |                                            |                                            | 20                | 30          | -      | 80           | 530          | 1,220        | 330          | 160          | 1,280          | 6,820        | 230           | 220            | 310   | -       | 210            | 100            |
| Sodium                         | mg/kg | 5    |                                |                                            |                                            |                                            | -                 | -           | 120    | -            | -            | -            | -            | -            | -              | -            | -             | -              | -     | 390     | -              | -              |
| Sodium (filtered)              | mg/kg | 5    |                                |                                            |                                            |                                            | 30                | 40          | -      | 250          | 150          | 850          | 300          | 60           | 440            | 2,390        | 70            | 70             | 110   | -       | 80             | 80             |
| Metals                         |       |      |                                |                                            |                                            |                                            |                   |             |        |              |              |              |              |              |                |              |               |                |       |         |                | 1              |
| Boron                          | mg/kg | 10   |                                | 15,000                                     | 15,000                                     | 60,000                                     | <50               | <50         | <10    | <50          | <50          | <50          | <50          | <50          | <50            | <50          | <50           | <50            | <50   | <10     | <50            | <50            |
| Cadmium                        | mg/kg | 0.4  | 3                              | 100                                        | 100                                        | 400                                        | <1                | <1          | < 0.4  | <1           | 5            | 4            | <1           | <1           | <1             | <1           | <1            | 2              | <1    | 1.8     | <1             | <1             |
| Copper                         | mg/kg | 5    | 100                            | 5,000                                      | 5,000                                      | 20,000                                     | 6                 | 5           | 10     | <5           | 29           | <5           | <5           | <5           | 24             | 79           | <5            | <5             | <5    | <5      | 9              | 23             |
| Manganese                      | mg/kg | 5    |                                |                                            |                                            |                                            | 149               | 174         | 200    | 64           | 278          | 108          | 19           | 174          | 233            | 178          | 207           | 96             | 65    | 71      | 302            | 334            |
| Molybdenum                     | mg/kg | 2    | 40                             | 1,000                                      | 1,000                                      | 4,000                                      | <2                | <2          | <5     | <2           | <2           | <2           | <2           | <2           | <2             | <2           | <2            | <2             | <2    | <5      | <2             | <2             |
| Zinc                           | mg/kg | 5    | 200                            | 35,000                                     | 35,000                                     | 140,000                                    | 19                | 19          | 30     | 11           | 44           | 25           | 9            | 22           | 151            | 190          | 17            | 19             | 7     | 15      | 40             | 51             |



| Г | Location Code  | SB08_0.1-0.2 | SB08_0.5-0.6 | SB08_1.0-1.1 | SB09_0.0-0.1 | SB10_0.1-0.2 | SB10_0.5-0.6 | SB10_0.9-1.0 | SS01       | SS02       | SS03       | SS04       | SS05       |
|---|----------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|------------|------------|------------|------------|
| Г | Field ID       | SB08_0.1-0.2 | SB08_0.5-0.6 | SB08_1.0-1.1 | SB09_0.0-0.1 | SB10_0.1-0.2 | SB10_0.5-0.6 | SB10_0.9-1.0 | SS01       | SS02       | SS03       | SS04       | SS05       |
| Г | Date           | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021   | 10/08/2021 | 10/08/2021 | 10/08/2021 | 10/08/2021 | 10/08/2021 |
|   | Sample Type    | Fill         | Natural      | Natural      | Fill         | Fill         | Natural      | Natural      | Natural    | Fill       | Fill       | Fill       | Fill       |
| Г | Lab Report No. | EM2115737    | EM2115737  | EM2115737  | EM2115737  | EM2115737  | EM2115737  |

|                                |       |      |                                  |                                            |                                            | Lab Report No.                             | EM2115/3/ |
|--------------------------------|-------|------|----------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|                                | Unit  | EQL  | Fill material upper limi<br>(TC) | Waste disposal category D upper limit (TC) | Waste disposal category C upper limit (TC) | Waste disposal category B upper limit (TC) |           |           |           |           |           |           |           |           |           |           |           |           |
| NA                             |       |      |                                  |                                            |                                            |                                            |           |           |           |           |           |           |           |           |           |           |           |           |
| Sulfur - Total as S (LECO)     | %     | 0.01 |                                  |                                            |                                            |                                            | 0.04      | 0.02      | 0.01      | 1.08      | 3.12      | 0.07      | 0.27      | 0.01      | 0.04      | 0.01      | 0.02      | < 0.01    |
| Physical Parameters            |       |      |                                  |                                            |                                            |                                            |           |           |           |           |           |           |           |           |           |           |           |           |
| Moisture Content               | %     | 1    |                                  |                                            |                                            |                                            | 4.8       | 3.8       | 2.6       | 13.7      | 20.3      | 7.9       | 7.3       | <1.0      | 18.4      | 5.4       | 2.5       | 2.6       |
| Inorganics                     |       |      |                                  |                                            |                                            |                                            |           |           |           |           |           |           |           |           |           |           |           |           |
| Ammonia (as N)                 | mg/kg | 5    |                                  |                                            |                                            |                                            | <20       | <20       | <20       | <20       | <20       | <20       | <20       | <20       | <20       | <20       | <20       | <20       |
| Nitrate (as N)                 | mg/kg | 0.1  |                                  |                                            |                                            |                                            | 2.9       | 0.8       | 0.3       | 0.1       | < 0.1     | 0.1       | 0.3       | 10.6      | 0.8       | 2.2       | 0.2       | 0.1       |
| Nitrite (as N)                 | mg/kg | 0.1  |                                  |                                            |                                            |                                            | 0.1       | 0.4       | < 0.1     | < 0.1     | < 0.1     | < 0.1     | < 0.1     | 0.5       | 0.2       | 0.7       | < 0.1     | < 0.1     |
| Total Oxidised Nitrogen (as N) | mg/kg | 0.1  |                                  |                                            |                                            |                                            | 3.0       | 1.2       | 0.3       | 0.1       | <0.1      | 0.1       | 0.3       | 11.1      | 1.0       | 2.9       | 0.2       | 0.1       |
| Total Kjeldahl Nitrogen        | mg/kg | 10   |                                  |                                            |                                            |                                            | 290       | 150       | 100       | 540       | 340       | 180       | 340       | 340       | 990       | 90        | 420       | <20       |
| Total Nitrogen (as N)          | mg/kg | 20   |                                  |                                            |                                            |                                            | 290       | 150       | 100       | 540       | 340       | 180       | 340       | 350       | 990       | 90        | 420       | <20       |
| Phosphorus (as P)              | mg/kg | 2    |                                  |                                            |                                            |                                            | 504       | 168       | 297       | 8,570     | 8,460     | 408       | 216       | 109       | 199       | 113       | 168       | 69        |
| Ortho-phosphate (as P)         | mg/kg | 0.1  |                                  |                                            |                                            |                                            | 1.2       | 1.1       | 0.5       | 274       | 145       | 18.9      | 8.6       | 0.6       | 2.4       | 1.1       | 5.0       | 0.1       |
| Sulfur (as S)                  | mg/kg | 5    |                                  |                                            |                                            |                                            | -         | -         | -         | -         | -         | -         | -         | -         | -         | -         | -         | -         |
| Major Ions                     |       |      |                                  |                                            |                                            |                                            |           |           |           |           |           |           | 1         |           | 1         |           | 1         | 1         |
| Calcium                        | mg/kg | 5    |                                  |                                            |                                            |                                            | -         | -         | -         | -         | -         | -         | -         | -         | -         | -         | -         | -         |
| Calcium (filtered)             | mg/kg | 5    |                                  |                                            |                                            |                                            | 130       | 30        | <10       | 4.060     | 4.180     | 200       | 40        | 10        | 30        | 20        | 40        | <10       |
| Magnesium                      | mg/kg | 5    |                                  |                                            |                                            |                                            | -         | -         | -         | -         | -         | -         | -         | -         | -         | -         | -         | -         |
| Magnesium (filtered)           | mg/kg | 5    |                                  |                                            |                                            |                                            | 20        | 20        | <10       | 20        | 60        | 40        | 10        | <10       | 20        | 60        | <10       | <10       |
| Potassium                      | mg/kg | 5    |                                  |                                            |                                            |                                            | -         | -         | -         | -         | -         | -         | -         | -         | -         | -         | -         | -         |
| Potassium (filtered)           | mg/kg | 5    |                                  |                                            |                                            |                                            | 60        | 30        | 10        | 80        | 310       | 220       | 240       | 20        | 50        | 30        | 20        | <10       |
| Sodium                         | mg/kg | 5    |                                  |                                            |                                            |                                            | -         | -         | -         | -         | -         | -         | -         | -         | -         | -         | -         | -         |
| Sodium (filtered)              | mg/kg | 5    |                                  |                                            |                                            |                                            | 30        | 30        | 10        | 80        | 110       | 60        | 90        | 20        | 50        | 90        | 10        | 20        |
| Metals                         |       |      |                                  |                                            |                                            |                                            |           |           |           |           |           |           |           |           |           |           |           | 1         |
| Boron                          | mg/kg | 10   |                                  | 15,000                                     | 15,000                                     | 60,000                                     | <50       | <50       | <50       | <50       | <50       | <50       | <50       | <50       | <50       | <50       | <50       | <50       |
| Cadmium                        | mg/kg | 0.4  | 3                                | 100                                        | 100                                        | 400                                        | <1        | <1        | <1        | 2         | 3         | <1        | <1        | <1        | <1        | <1        | <1        | <1        |
| Copper                         | mg/kg | 5    | 100                              | 5,000                                      | 5,000                                      | 20,000                                     | 9         | 8         | 8         | <5        | 5         | <5        | <5        | <5        | <5        | <5        | <5        | <5        |
| Manganese                      | mg/kg | 5    |                                  |                                            |                                            |                                            | 404       | 267       | 306       | 72        | 90        | 66        | 67        | 108       | 48        | 56        | 40        | 19        |
| Molybdenum                     | mg/kg | 2    | 40                               | 1,000                                      | 1,000                                      | 4.000                                      | <2        | <2        | <2        | <2        | <2        | <2        | <2        | <2        | <2        | <2        | <2        | <2        |
| Zinc                           | mg/kg | 5    | 200                              | 35,000                                     | 35,000                                     | 140.000                                    | 44        | 34        | 42        | 13        | 24        | 5         | 7         | 9         | 6         | 8         | <5        | <5        |
|                                | 3,9   |      | 200                              | ,000                                       | 22,000                                     |                                            |           |           |           |           |           |           |           |           |           |           |           |           |

# Appendix A: Property Planning Report



From www.planning.vic.gov.au at 26 July 2021 02:36 PM

#### **PROPERTY DETAILS**

Lot and Plan Number: Lot 2 PS344713

Address: 250 DRYSDALE ROAD LITTLE RIVER 3211

Standard Parcel Identifier (SPI): 2\PS344713

Local Government Area (Council): GREATER GEELONG www.geelongaustralia.com.au

Council Property Number: 301655 (Part)

Planning Scheme - Greater Geelong Planning Scheme: **Greater Geelong** 

Vicroads 77 J8 Directory Reference:

This parcel is one of 2 parcels comprising the property. For full parcel details get the free Property report at Property Reports

**UTILITIES** STATE ELECTORATES

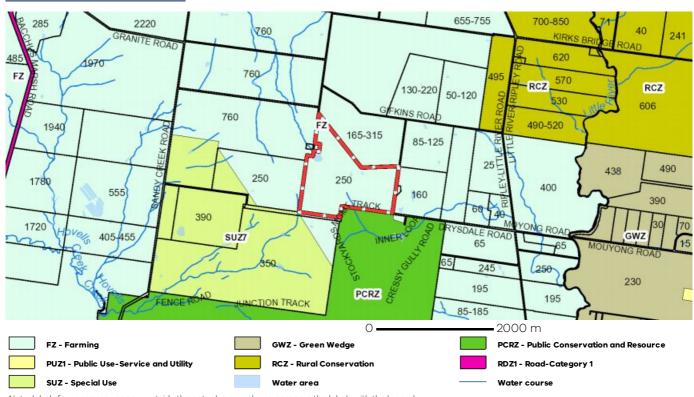
**WESTERN VICTORIA** Rural Water Corporation: Legislative Council: **Southern Rural Water** 

Urban Water Corporation: Barwon Water Legislative Assembly: LARA

Melbourne Water: Inside drainage boundary

Power Distributor: **POWERCOR OTHER** 

Registered Aboriginal Party: Wadawurrung Traditional


**Owners Aboriginal Corporation** 

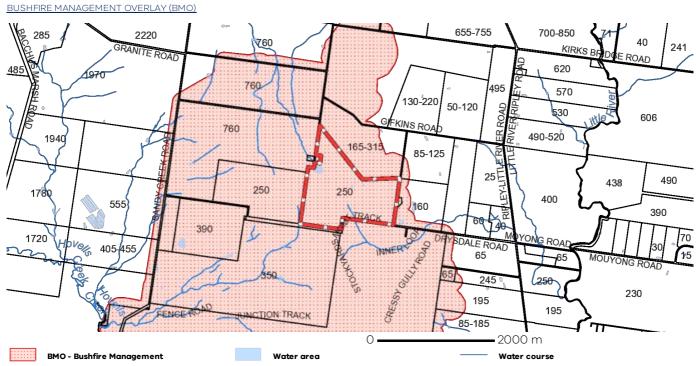
#### **Planning Zones**

View location in VicPlan

FARMING ZONE (FZ)

SCHEDULE TO THE FARMING ZONE (FZ)

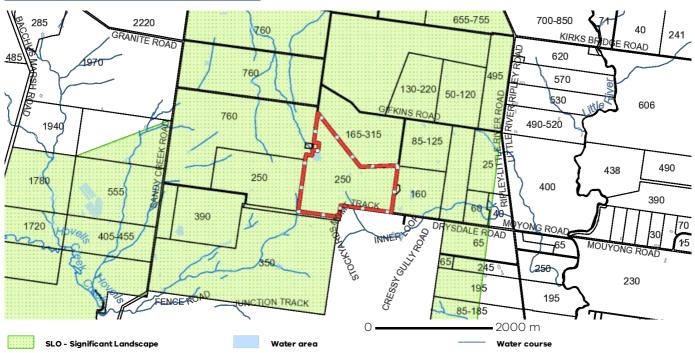



Note: labels for zones may appear outside the actual zone - please compare the labels with the legend.

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at <a href="https://www2.delwp.vic.gov.au/disclaimer">https://www2.delwp.vic.gov.au/disclaimer</a>




#### **Planning Overlays**



Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

#### SIGNIFICANT LANDSCAPE OVERLAY (SLO)

#### SIGNIFICANT LANDSCAPE OVERLAY - SCHEDULE 1 (SLO1)



Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

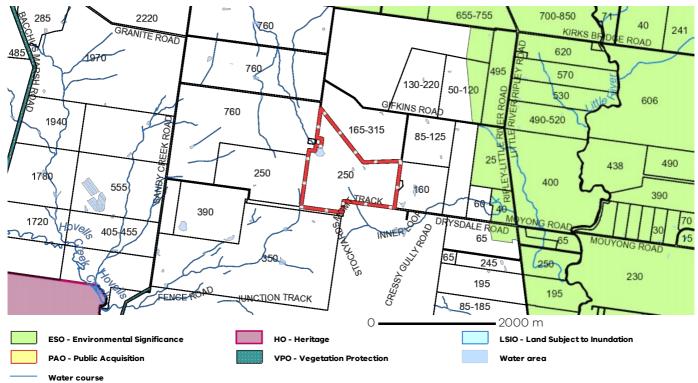
Read the full disclaimer at <a href="https://www2.delwp.vic.gov.au/disclaimer">https://www2.delwp.vic.gov.au/disclaimer</a>



#### **Planning Overlays**

OTHER OVERLAYS

Other overlays in the vicinity not directly affecting this land


ENVIRONMENTAL SIGNIFICANCE OVERLAY (ESO)

HERITAGE OVERLAY (HO)

LAND SUBJECT TO INUNDATION OVERLAY (LSIO)

PUBLIC ACQUISITION OVERLAY (PAO)

VEGETATION PROTECTION OVERLAY (VPO)



Note: due to overlaps, some overlays may not be visible, and some colours may not match those in the legend

Copyright © - State Government of Victoria

Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

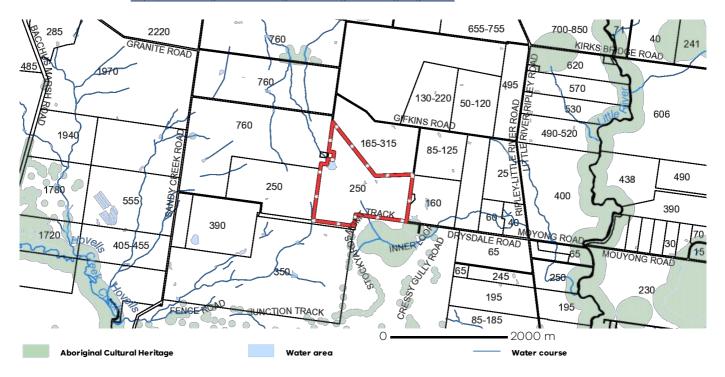
Read the full disclaimer at <a href="https://www2.delwp.vic.gov.au/disclaimer">https://www2.delwp.vic.gov.au/disclaimer</a>



#### **Areas of Aboriginal Cultural Heritage Sensitivity**

All or part of this parcel is an 'area of cultural heritage sensitivity'.

'Areas of cultural heritage sensitivity' are defined under the Aboriginal Heritage Regulations 2018, and include registered Aboriginal cultural heritage places and land form types that are generally regarded as more likely to contain Aboriginal cultural heritage.


Under the Aboriginal Heritage Regulations 2018, 'areas of cultural heritage sensitivity' are one part of a two part trigger which require a 'cultural heritage management plan' be prepared where a listed 'high impact activity' is proposed.

If a significant land use change is proposed (for example, a subdivision into 3 or more lots), a cultural heritage management plan may be triggered. One or two dwellings, works ancillary to a dwelling, services to a dwelling, alteration of buildings and minor works are examples of works exempt from this reauirement.

Under the Aboriginal Heritage Act 2006, where a cultural heritage management plan is required, planning permits, licences and work authorities cannot be issued unless the cultural heritage management plan has been approved for the activity.

For further information about whether a Cultural Heritage Management Plan is required go to http://www.aav.nrms.net.au/aavQuestion1.aspx

More information, including links to both the Aboriginal Heritage Act 2006 and the Aboriginal Heritage Regulations 2018, and the Aboriginal Heritage Regulatiocan also be found here - https://www.aboriginalvictoria.vic.gov.au/aboriginal-heritage-legislation



Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at <a href="https://www2.delwp.vic.gov.au/disclaimer">https://www2.delwp.vic.gov.au/disclaimer</a>



#### **Further Planning Information**

Planning scheme data last updated on 21 July 2021.

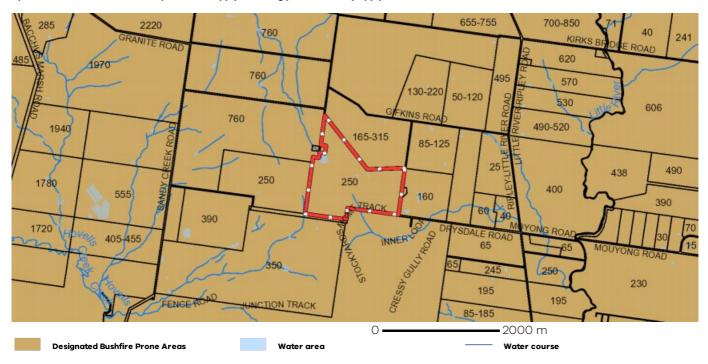
A planning scheme sets out policies and requirements for the use, development and protection of land. This report provides information about the zone and overlay provisions that apply to the selected land. Information about the State and local policy, particular, general and operational provisions of the local planning scheme that may affect the use of this land can be obtained by contacting the local council or by visiting <a href="https://www.planning.vic.gov.au">https://www.planning.vic.gov.au</a>

This report is NOT a Planning Certificate issued pursuant to Section 199 of the Planning and Environment Act 1987. It does not include information about exhibited planning scheme amendments, or zonings that may abut the land. To obtain a Planning Certificate go to Titles and Property Certificates at Landata - https://www.landata.vic.gov.au

For details of surrounding properties, use this service to get the Reports for properties of interest.

To view planning zones, overlay and heritage information in an interactive format visit https://mapshare.maps.vic.gov.au/vicplan

For other information about planning in Victoria visit https://www.planning.vic.gov.au


Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at <a href="https://www2.delwp.vic.gov.au/disclaimer">https://www2.delwp.vic.gov.au/disclaimer</a>



#### **Designated Bushfire Prone Areas**

This parcel is in a designated bushfire prone area. Special bushfire construction requirements apply. Planning provisions may apply.



Designated bushfire prone areas as determined by the Minister for Planning are in effect from 8 September 2011 and amended from time to time.

The Building Regulations 2018 through application of the Building Code of Australia, apply bushfire protection standards for building works in designated bushfire prone areas.

Designated bushfire prone areas maps can be viewed on VicPlan at <a href="https://mapshare.maps.vic.gov.au/vicplan">https://mapshare.maps.vic.gov.au/vicplan</a> or at the relevant local council.

Note: prior to 8 September 2011, the whole of Victoria was designated as bushfire prone area for the purposes of the building control system.

Further information about the building control system and building in bushfire prone areas can be found on the Victorian Building Authority website <a href="https://www.vba.vic.gov.au">https://www.vba.vic.gov.au</a>

Copies of the Building Act and Building Regulations are available from http://www.legislation.vic.gov.au

For Planning Scheme Provisions in bushfire areas visit <a href="https://www.planning.vic.gov.au">https://www.planning.vic.gov.au</a>

#### **Native Vegetation**

Native plants that are indigenous to the region and important for biodiversity might be present on this property. This could include trees, shrubs, herbs, grasses or aquatic plants. There are a range of regulations that may apply including need to obtain a planning permit under Clause 52.17 of the local planning scheme. For more information see Native Vegetation (Clause 52.17) with local variations in Native Vegetation (Clause 52.17) Schedule

To help identify native vegetation on his property and the application of Clause 52.17 please visit the Native Vegetation Information Management system https://nvim.delwp.vic.gov.au/and Native vegetation (environment.vic.gov.au) or please contact your relevant council.

You can find out more about the natural values on your property through NatureKit NatureKit (environment.vic.gov.au)

Copyright ® - State Government of Victoria
Disclaimer: This content is provided for information purposes only. No claim is made as to the accuracy or authenticity of the content. The Victorian Government does not accept any liability to any person for the information provided.

Read the full disclaimer at <a href="https://www2.delwp.vic.gov.au/disclaimer">https://www2.delwp.vic.gov.au/disclaimer</a>

# Appendix B: Lotsearch Report

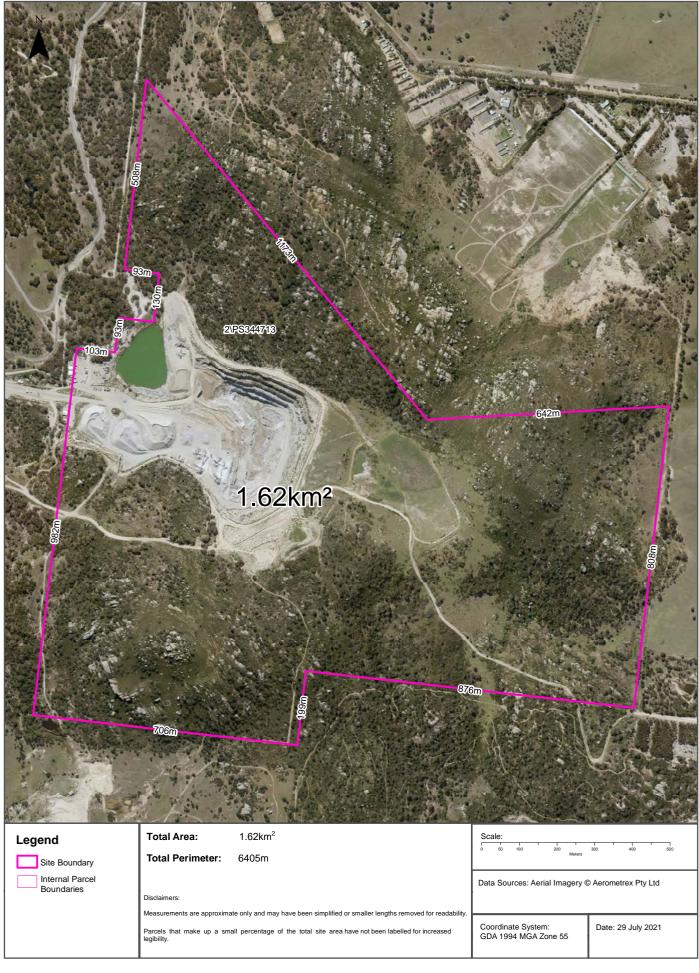


Address: 250 Drysdale Road, Little River, VIC 3211

Date: 29 Jul 2021 08:03:39 Reference: LS022747 EP

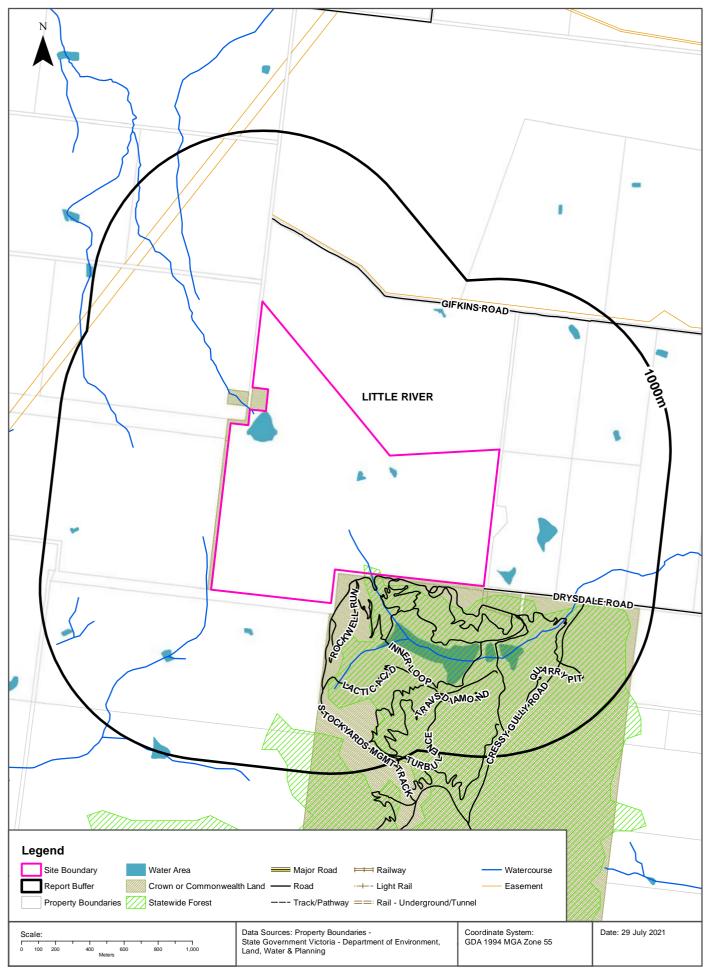
#### Disclaimer:

The purpose of this report is to provide an overview of some of the site history, environmental risk and planning information available, affecting an individual address or geographical area in which the property is located. It is not a substitute for an on-site inspection or review of other available reports and records. It is not intended to be, and should not be taken to be, a rating or assessment of the desirability or market value of the property or its features. You should obtain independent advice before you make any decision based on the information within the report. The detailed terms applicable to use of this report are set out at the end of this report.


# **Dataset Listing**

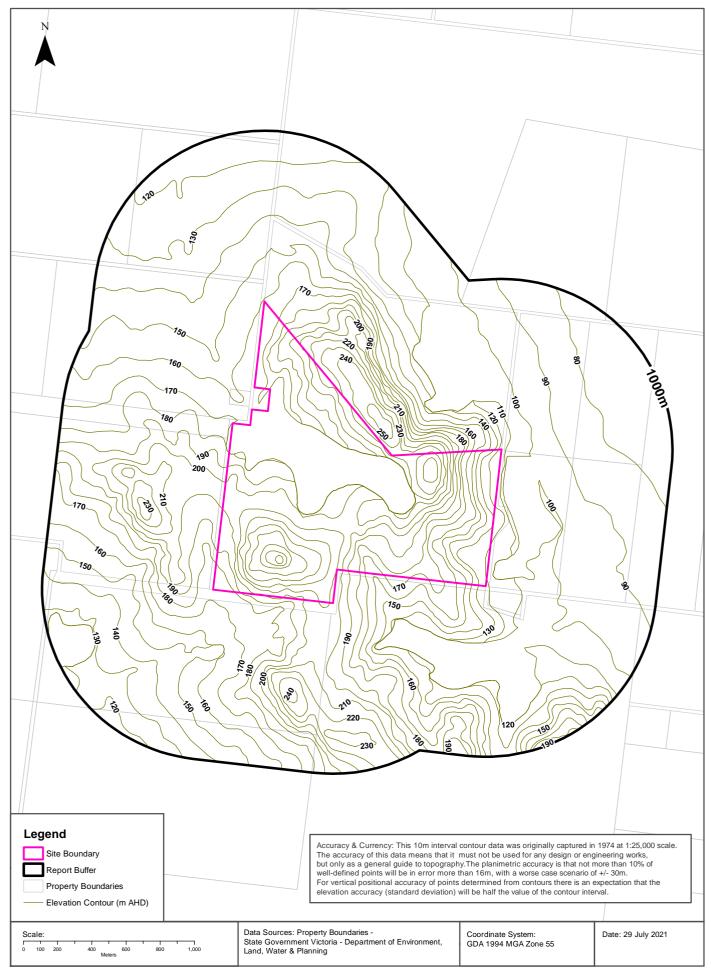
Datasets contained within this report, detailing their source and data currency:

| Dataset Name                                                                                                             | Custodian                                                                     | Supply<br>Date | Currency<br>Date | Update<br>Frequency | Dataset<br>Buffer<br>(m) | No.<br>Features<br>Onsite | No.<br>Features<br>within<br>100m | No.<br>Features<br>in Buffer |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------|------------------|---------------------|--------------------------|---------------------------|-----------------------------------|------------------------------|
| Topographic and Cadastre data                                                                                            | State Government Victoria - Department of Environment, Land, Water & Planning | 19/07/2021     | 19/07/2021       | Monthly             | -                        | -                         | -                                 | -                            |
| Current EPA Priority Sites                                                                                               | Environment Protection Authority (Vic)                                        | 01/07/2021     | 31/05/2021       | Monthly             | 1000                     | 0                         | 0                                 | 0                            |
| Former EPA Priority Sites & other Remedial Notices                                                                       | Environment Protection Authority (Vic)                                        | 25/01/2021     | 25/01/2021       | Monthly             | 1000                     | 0                         | 0                                 | 0                            |
| EPA PFAS Site<br>Investigations                                                                                          | Environment Protection Authority (Vic)                                        | 01/07/2021     | 18/09/2020       | Monthly             | 2000                     | 0                         | 0                                 | 0                            |
| Defence PFAS Investigation<br>& Management Program -<br>Investigation Sites                                              | Department of Defence                                                         | 01/07/2021     | 01/07/2021       | Monthly             | 2000                     | 0                         | 0                                 | 0                            |
| Defence PFAS Investigation<br>& Management Program -<br>Management Sites                                                 | Department of Defence                                                         | 01/07/2021     | 01/07/2021       | Monthly             | 2000                     | 0                         | 0                                 | 0                            |
| Airservices Australia National PFAS Management Program                                                                   | Airservices Australia                                                         | 07/07/2021     | 07/07/2021       | Monthly             | 2000                     | 0                         | 0                                 | 0                            |
| Defence 3 Year Regional<br>Contamination Investigation<br>Program                                                        | Department of Defence                                                         | 11/05/2021     | 11/05/2021       | Quarterly           | 2000                     | 0                         | 0                                 | 0                            |
| EPA Environmental Audit Reports                                                                                          | Environment Protection Authority (Vic)                                        | 22/07/2021     | 22/07/2021       | Monthly             | 1000                     | 0                         | 0                                 | 0                            |
| EPA Groundwater Zones with Restricted Uses                                                                               | Environment Protection Authority (Vic)                                        | 12/07/2021     | 12/07/2021       | Monthly             | 1000                     | 0                         | 0                                 | 0                            |
| Current EPA Licensed Activities                                                                                          | Environment Protection Authority (Vic)                                        | 22/07/2021     | 22/07/2021       | Monthly             | 1000                     | 0                         | 0                                 | 0                            |
| Former EPA Licensed Activities                                                                                           | Environment Protection Authority (Vic)                                        | 22/07/2021     | 22/07/2021       | Monthly             | 1000                     | 1                         | 1                                 | 1                            |
| EPA Works Approvals                                                                                                      | Environment Protection Authority (Vic)                                        | 01/07/2021     | 01/07/2021       | Monthly             | 1000                     | 0                         | 0                                 | 0                            |
| National Waste Management Facilities Database                                                                            | Geoscience Australia                                                          | 12/05/2021     | 07/03/2017       | Annually            | 1000                     | 0                         | 0                                 | 0                            |
| Statewide Waste and<br>Resource Recovery<br>Infrastructure Plan Facilities                                               | State Government Victoria - Department of Sustainability                      | 27/11/2014     | 31/12/2012       | None<br>planned     | 1000                     | 0                         | 0                                 | 0                            |
| EPA Prescribed Industrial Waste                                                                                          | Environment Protection Authority (Vic)                                        | 12/08/2020     | 12/08/2020       | Quarterly           | 1000                     | 0                         | 0                                 | 0                            |
| EPA Victorian Landfill Register                                                                                          | Environment Protection Authority (Vic)                                        | 22/04/2021     | 25/08/2020       | Quarterly           | 1000                     | 1                         | 1                                 | 1                            |
| Former Gasworks                                                                                                          | Various historical sources collated by Lotsearch                              | 15/08/2017     | 15/08/2017       | Not required        | 1000                     | 0                         | 0                                 | 0                            |
| National Liquid Fuel Facilities                                                                                          | Geoscience Australia                                                          | 15/02/2021     | 15/03/2012       | Annually            | 1000                     | 0                         | 0                                 | 0                            |
| Historical Business<br>Directories (Premise &<br>Intersection Matches)                                                   | Hardie Grant; Sands & McDougall, State<br>Library Victoria                    |                |                  | Not required        | 150                      | 0                         | 0                                 | 0                            |
| Historical Business<br>Directories (Road & Area<br>Matches)                                                              | Hardie Grant; Sands & McDougall, State<br>Library Victoria                    |                |                  | Not required        | 150                      | -                         | 0                                 | 0                            |
| Historical Business Directory<br>Dry Cleaners & Motor<br>Garages/Service Stations<br>(Premise & Intersection<br>Matches) | Hardie Grant; Sands & McDougall, State<br>Library Victoria                    |                |                  | Not<br>required     | 500                      | 0                         | 0                                 | 0                            |
| Historical Business Directory<br>Dry Cleaners & Motor<br>Garages/Service Stations<br>(Road & Area Matches)               | Hardie Grant; Sands & McDougall, State<br>Library Victoria                    |                |                  | Not required        | 500                      | -                         | 0                                 | 0                            |
| Features of Interest                                                                                                     | State Government Victoria - Department of Environment, Land, Water & Planning | 31/05/2021     | 31/05/2021       | Quarterly           | 1000                     | 1                         | 3                                 | 28                           |
| Hydrogeology Map of<br>Australia                                                                                         | Commonwealth of Australia (Geoscience Australia)                              | 08/10/2014     | 17/03/2000       | As required         | 1000                     | 1                         | 1                                 | 1                            |
| Groundwater Salinity                                                                                                     | State Government Victoria - Department of Environment, Land, Water & Planning | 14/08/2015     | 29/08/2012       | Unknown             | 0                        | 1                         | -                                 | -                            |
| Depth to Watertable                                                                                                      | State Government Victoria - Department of Environment, Land, Water & Planning | 14/08/2015     | 29/08/2012       | Unknown             | 0                        | 5                         | -                                 | -                            |


| Dataset Name                                                    | Custodian                                                                                     | Supply<br>Date | Currency<br>Date | Update<br>Frequency | Dataset<br>Buffer<br>(m) |   | No.<br>Features<br>within<br>100m | No.<br>Features<br>in Buffer |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------|------------------|---------------------|--------------------------|---|-----------------------------------|------------------------------|
| Surface Elevation                                               | State Government Victoria - Department of Environment, Land, Water & Planning                 | 14/08/2015     | 23/09/2013       | Unknown             | 0                        | 1 | -                                 | -                            |
| Basement Elevation                                              | State Government Victoria - Department of Environment, Land, Water & Planning                 | 14/08/2015     | 23/09/2013       | Unknown             | 0                        | 1 | -                                 | -                            |
| Groundwater Boreholes WMIS                                      | State Government Victoria - Department of Environment, Land, Water & Planning                 | 16/02/2021     | 16/02/2021       | Quarterly           | 2000                     | 3 | 3                                 | 9                            |
| Groundwater Boreholes<br>Earth Resources Database               | State Government Victoria - Department of Economic Development, Jobs, Transport and Resources | 20/05/2021     | 17/02/2010       | Annually            | 2000                     | 2 | 2                                 | 9                            |
| Groundwater Boreholes Fed<br>Uni                                | Federation University Australia                                                               | 21/12/2017     | 07/01/2014       | As required         | 2000                     | 2 | 2                                 | 8                            |
| Historical Mining Activity -<br>Shafts                          | State Government Victoria - Department of Economic Development, Jobs, Transport and Resources | 11/05/2021     | 11/05/2021       | Annually            | 1000                     | 0 | 0                                 | 0                            |
| Geological Units 1:50,000                                       | State Government Victoria - Department of Economic Development, Jobs, Transport and Resources | 13/01/2015     | 24/06/2014       | Unknown             | 1000                     | 3 | -                                 | 4                            |
| Geological Structures<br>1:50,000                               | State Government Victoria - Department of Economic Development, Jobs, Transport and Resources | 13/01/2015     | 24/06/2014       | Unknown             | 1000                     | 0 | -                                 | 0                            |
| Dykes and Marker Beds 50k                                       | State Government Victoria - Department of Economic Development, Jobs, Transport and Resources | 13/01/2015     | 24/06/2014       | Unknown             | 1000                     | 0 | -                                 | 0                            |
| Shear zones 250k                                                | State Government Victoria - Department of Economic Development, Jobs, Transport and Resources | 13/01/2015     | 24/06/2014       | Unknown             | 1000                     | 0 | -                                 | 0                            |
| Atlas of Australian Soils                                       | ABARES                                                                                        | 19/05/2017     | 17/02/2011       | As required         | 1000                     | 1 | 1                                 | 1                            |
| Victorian Soil Type Mapping                                     | State Government Victoria - Department of Economic Development, Jobs, Transport and Resources | 24/08/2017     | 21/03/2016       | Unknown             | 1000                     | 2 | 2                                 | 4                            |
| Atlas of Australian Acid<br>Sulfate Soils                       | CSIRO                                                                                         | 19/01/2017     | 21/02/2013       | As required         | 1000                     | 1 | 1                                 | 1                            |
| Coastal Acid Sulfate Soils                                      | State Government Victoria - Department of Economic Development, Jobs, Transport and Resources | 28/03/2017     | 30/03/2011       | None<br>planned     | 1000                     | 0 | 0                                 | 0                            |
| Planning Scheme Zones                                           | State Government Victoria - Department of Environment, Land, Water & Planning                 | 06/07/2021     | 30/06/2021       | Monthly             | 1000                     | 1 | 3                                 | 3                            |
| Planning Scheme Overlay                                         | State Government Victoria - Department of Environment, Land, Water & Planning                 | 06/07/2021     | 30/06/2021       | Monthly             | 1000                     | 2 | 2                                 | 2                            |
| Commonwealth Heritage List                                      | Australian Government Department of Agriculture, Water and the Environment                    | 18/05/2021     | 20/11/2019       | Annually            | 1000                     | 0 | 0                                 | 0                            |
| National Heritage List                                          | Australian Government Department of Agriculture, Water and the Environment                    | 18/05/2021     | 20/11/2019       | Annually            | 1000                     | 0 | 0                                 | 0                            |
| Victorian Heritage Register                                     | State Government Victoria - Department of Environment, Land, Water & Planning                 | 03/05/2021     | 03/05/2021       | Quarterly           | 1000                     | 0 | 0                                 | 0                            |
| Cultural Heritage Sensitivity                                   | State Government Victoria - Department of Premier and Cabinet                                 | 31/05/2021     | 31/05/2021       | Quarterly           | 1000                     | 0 | 2                                 | 15                           |
| Bushfire Prone Area                                             | State Government Victoria - Department of Transport, Planning and Local Infrastructure        | 03/05/2021     | 03/05/2021       | Quarterly           | 1000                     | 1 | 1                                 | 1                            |
| Fire History                                                    | State Government Victoria - Department of Environment, Land, Water & Planning                 | 12/07/2021     | 30/12/2020       | Quarterly           | 1000                     | 1 | 1                                 | 2                            |
| Flood - 1 in 100 Year<br>Modelled Flood Extent                  | State Government Victoria - Department of Environment, Land, Water & Planning                 | 11/05/2021     | 05/02/2018       | Quarterly           | 1000                     | 0 | 0                                 | 0                            |
| Victorian Coastal Inundation<br>Sea Level Rise                  | State Government Victoria - Department of Environment, Land, Water & Planning                 | 10/04/2018     | 24/10/2017       | Unknown             | 1000                     | 0 | 0                                 | 0                            |
| Native Vegetation (Modelled 2005 Ecological Vegetation Classes) | State Government Victoria - Department of Environment, Land, Water & Planning                 | 13/01/2015     | 31/12/2005       | None<br>planned     | 1000                     | 2 | 2                                 | 5                            |
| Ramsar Wetland Areas in Victoria                                | State Government Victoria - Department of Environment, Land, Water & Planning                 | 25/02/2021     | 13/03/2019       | Annually            | 1000                     | 0 | 0                                 | 0                            |
| Groundwater Dependent<br>Ecosystems Atlas                       | Bureau of Meteorology                                                                         | 14/08/2017     | 15/05/2017       | Unknown             | 1000                     | 2 | 2                                 | 5                            |
| Inflow Dependent<br>Ecosystems Likelihood                       | Bureau of Meteorology                                                                         | 14/08/2017     | 15/05/2017       | Unknown             | 1000                     | 4 | 4                                 | 7                            |






### **Topographic Data**





### Elevation Contours (m AHD) 10m Interval at 1:25,000





# **EPA Priority Sites & Pollution Notices**

250 Drysdale Road, Little River, VIC 3211

#### **Current EPA Priority Sites Register**

Sites on the current EPA priority sites register that exist within the dataset buffer:

| Notice No | Address              | Suburb | Issue | Loc<br>Conf | Dist<br>(m) | Direction |
|-----------|----------------------|--------|-------|-------------|-------------|-----------|
| N/A       | No records in buffer |        |       |             |             |           |

Priority Sites Data Custodian: State Government Victoria - Environment Protection Authority (EPA)

### **Former EPA Priority Sites & Other Pollution Notices**

Sites within the dataset buffer that have been issued a Pollution Notice:

Note. Due to pollution notices being revoked and removed from published lists this is not an exhaustive list of all past pollution notices.

| Notice No | Notice<br>Type       | Company | Address | Suburb | Status | Issue | Date<br>Issued | Loc<br>Conf | Dist | Dir |
|-----------|----------------------|---------|---------|--------|--------|-------|----------------|-------------|------|-----|
| N/A       | No records in buffer |         |         |        |        |       |                |             |      |     |

Pollution Notice Data Custodian: State Government Victoria - Environment Protection Authority (EPA)

### **PFAS Investigation & Management Programs**

250 Drysdale Road, Little River, VIC 3211

### **EPA PFAS Site Investigations**

Sites being investigated by the EPA for PFAS contamination within the dataset buffer:

| Map ID | Site Name            | Address | Location<br>Confidence | Distance | Direction |
|--------|----------------------|---------|------------------------|----------|-----------|
| N/A    | No records in buffer |         |                        |          |           |

EPA PFAS Site Investigations Data Custodian: State Government Victoria - Environment Protection Authority (EPA)

# **Defence PFAS Investigation & Management Program Investigation Sites**

Sites being investigated by the Department of Defence for PFAS contamination within the dataset buffer:

| Map ID | Base Name            | Address | Location<br>Confidence | Distance | Direction |
|--------|----------------------|---------|------------------------|----------|-----------|
| N/A    | No records in buffer |         |                        |          |           |

Defence PFAS Investigation & Management Program Data Custodian: Department of Defence, Australian Government

# **Defence PFAS Investigation & Management Program Management Sites**

Sites being managed by the Department of Defence for PFAS contamination within the dataset buffer:

| Мар | D Base Name          | Address | Location<br>Confidence | Distance | Direction |
|-----|----------------------|---------|------------------------|----------|-----------|
| N/A | No records in buffer |         |                        |          |           |

Defence PFAS Investigation & Management Program Data Custodian: Department of Defence, Australian Government

# Airservices Australia National PFAS Management Program

Sites being investigated or managed by Airservices Australia for PFAS contamination within the dataset buffer:

| Map ID | Site Name            | Impacts | Location<br>Confidence | Distance | Direction |
|--------|----------------------|---------|------------------------|----------|-----------|
| N/A    | No records in buffer |         |                        |          |           |

Airservices Australia National PFAS Management Program Data Custodian: Airservices Australia

### **Defence Sites**

250 Drysdale Road, Little River, VIC 3211

# **Defence 3 Year Regional Contamination Investigation Program**

Sites which have been assessed as part of the Defence 3 Year Regional Contamination Investigation Program within the dataset buffer:

| Property ID | Base Name            | Address | Known<br>Contamination | Loc<br>Conf | Dist | Dir |
|-------------|----------------------|---------|------------------------|-------------|------|-----|
| N/A         | No records in buffer |         |                        |             |      |     |

Defence 3 Year Regional Contamination Investigation Program, Data Custodian: Department of Defence, Australian Government

#### **EPA Records**

250 Drysdale Road, Little River, VIC 3211

#### **EPA Environmental Audits**

EPA environmental audit records that exist within the dataset buffer: Note. Please click on CARMS No. to activate a hyperlink to online documentation. If link does not work, documentation may still be accessible via the EPA Interaction Portal.

| CARMS<br>No | Transaction<br>No    | Site | Address | Suburb | Date<br>Complete | Audit<br>Category | Loc Conf | Distance | Direction |
|-------------|----------------------|------|---------|--------|------------------|-------------------|----------|----------|-----------|
| N/A         | No records in buffer |      |         |        |                  |                   |          |          |           |

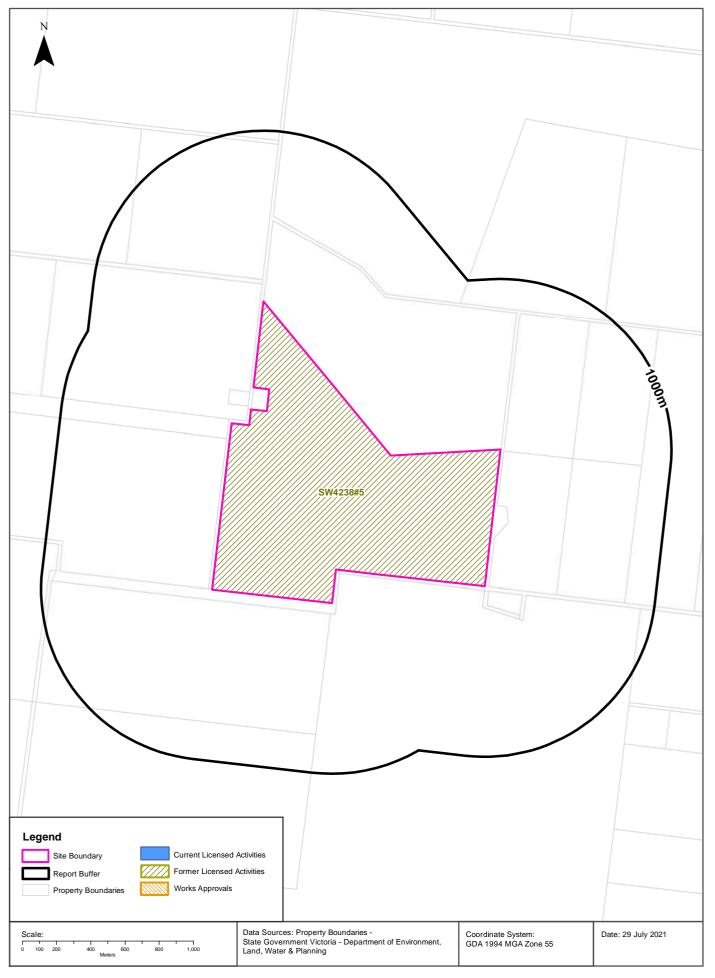
Environmental Audit Data Custodian: State Government Victoria - Environment Protection Authority (EPA)

#### **EPA Records**

250 Drysdale Road, Little River, VIC 3211

#### **EPA Groundwater Zones with Restricted Uses**

EPA GQRUZ records that exist within the dataset buffer:


Note. Please click on CARMS No. to activate a hyperlink to online documentation.

| CARMS<br>No | EPA Id               | Site History | Site Address | Restricted Uses | Status | Loc Conf | Distance | Direction |
|-------------|----------------------|--------------|--------------|-----------------|--------|----------|----------|-----------|
| N/A         | No records in buffer |              |              |                 |        |          |          |           |

Environmental GQRUZ Data Custodian: State Government Victoria - Environment Protection Authority (EPA)

# **EPA Records - Licensed Activities & Works Approvals**





#### **EPA Activities**

250 Drysdale Road, Little River, VIC 3211

#### **EPA Licensed Activities**

EPA licensed activities that exist within the dataset buffer:

| Trans<br>No | Licence<br>No              | Licence Type | Organisation | Premise<br>Ref | Premise<br>Address 1 | Premise Address 2 | Activities | Loc<br>Conf | Dist<br>(m) | Direction |
|-------------|----------------------------|--------------|--------------|----------------|----------------------|-------------------|------------|-------------|-------------|-----------|
| N/A         | No<br>records in<br>buffer |              |              |                |                      |                   |            |             |             |           |

Licensed Activity Data Custodian: State Government Victoria - Environment Protection Authority (EPA)

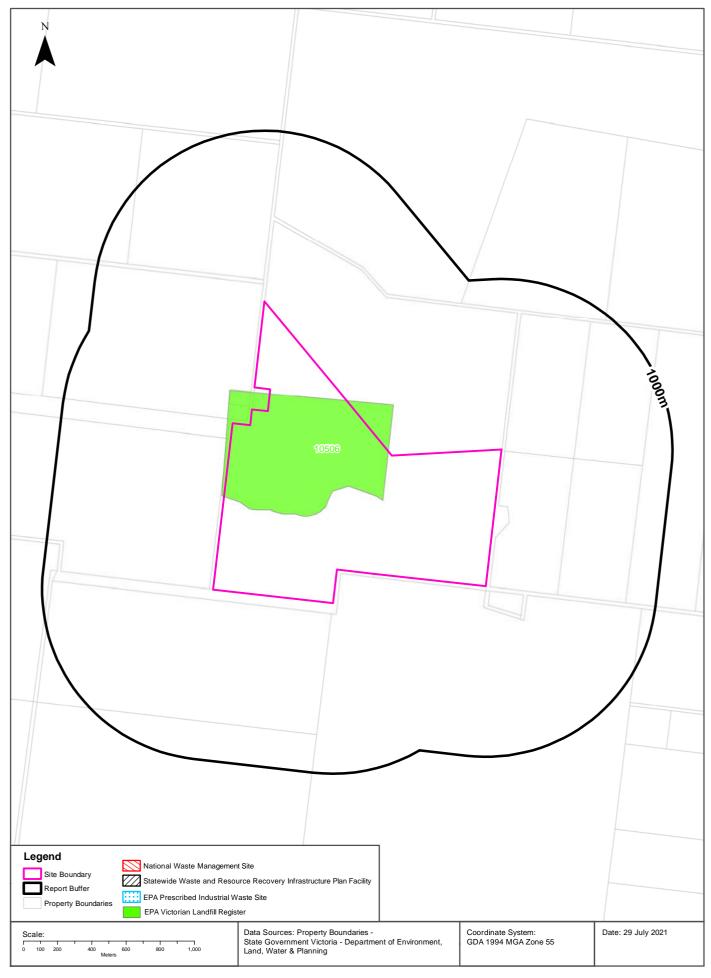
#### **Former EPA Licensed Activities**

Former EPA licensed activities that exist within the dataset buffer:

| Licence No | Organisation                  | Premise Address  | Suburb                   | Activities                         | Loc<br>Conf   | Dist<br>(m) | Direction |
|------------|-------------------------------|------------------|--------------------------|------------------------------------|---------------|-------------|-----------|
| SW4238#5   | KALARI PROPRIETARY<br>LIMITED | 250 Drysdales Rd | LITTLE RIVER VIC<br>3211 | C01 Extractive Industry and Mining | Premise Match | 0m          | Onsite    |

Former Licensed Activity Data Custodian: State Government Victoria - Environmental Protection Authority (EPA)

# **EPA Works Approvals**


EPA works approvals that exist within the dataset buffer:

| Transaction<br>No | Status               | Approval<br>No | Organisation | Premise<br>Address | Suburb | Scheduled<br>Categories | Loc Conf | Dist<br>(m) | Direction |
|-------------------|----------------------|----------------|--------------|--------------------|--------|-------------------------|----------|-------------|-----------|
| N/A               | No records in buffer |                |              |                    |        |                         |          |             |           |

Works Approvals Data Custodian: State Government Victoria - Environment Protection Authority (EPA)

# **Waste Management Facilities & Landfills**





# **Waste Management Facilities & Landfills**

250 Drysdale Road, Little River, VIC 3211

### **National Waste Management Site Database**

Sites on the National Waste Management Site Database within the dataset buffer:

| Site<br>Id | Owner                | Name | Address | Suburb | Class | Landfill | Reprocess | Transfer | Comments | Loc Conf | Dist<br>(m) | Direction |
|------------|----------------------|------|---------|--------|-------|----------|-----------|----------|----------|----------|-------------|-----------|
| N/A        | No records in buffer |      |         |        |       |          |           |          |          |          |             |           |

Waste Management Facilities Data Source: Australian Government Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

#### Statewide Waste and Resource Recovery Infrastructure Plan Facilities

Statewide Waste and Resource Recovery Infrastructure Plan Facilities within the dataset buffer:

| Map Id | Owner                | Site Name | Address | Suburb | Category | Sub Category | Loc Conf | Distance | Direction |
|--------|----------------------|-----------|---------|--------|----------|--------------|----------|----------|-----------|
| N/A    | No records in buffer |           |         |        |          |              |          |          |           |

SWRRIPF Data Source: State Government Victoria - Department of Sustainability

#### **EPA Prescribed Industrial Waste**

EPA Prescribed Industrial Waste treaters, disposers and permitted transporters within the dataset buffer:

| Map<br>Id | Company Name         | Address | Suburb | Treatment /Disposal | Transport | Accredited<br>Agent | EPA List<br>Status | Loc Conf | Dist'<br>(m) | Direct |
|-----------|----------------------|---------|--------|---------------------|-----------|---------------------|--------------------|----------|--------------|--------|
| N/A       | No records in buffer |         |        |                     |           |                     |                    |          |              |        |

Prescribed Industrial Waste Data Source: State Government Victoria - Environment Protection Authority (EPA)

# **Waste Management Facilities & Landfills**

250 Drysdale Road, Little River, VIC 3211

# **EPA Victorian Landfill Register**

EPA Victorian Landfill Register sites within the dataset buffer:

| Landfill<br>Register<br>No. | Site                                                                                                                                         | Address                                     | Operating<br>Status | Est. Year<br>Of<br>Closure | Waste type           | Loc Conf       | Dist'<br>(m) | Direction |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---------------------|----------------------------|----------------------|----------------|--------------|-----------|
| 10506                       | The Phosphate Co-<br>operative Company<br>of Australia LTD, Pt<br>C/A 14 Sec A And Pt<br>C/A 7 Sec 11 Parish<br>Of Wurdi Youang,<br>Woolatta | Sandy Creek Road, Little<br>River, VIC 3211 | Closed              | 2003                       | PIW, Chemical gypsum | As<br>Supplied | 0m           | Onsite    |

EPA Victorian Landfill Register Data Source: State Government Victoria - Environment Protection Authority (EPA)

# Former Gasworks and Liquid Fuel Facilities

250 Drysdale Road, Little River, VIC 3211

#### **Former Gasworks**

Former Gasworks identified from various historical sources within the dataset buffer: Note - As this is a dataset collated from various historical sources, it is not an exhaustive list of all former Gasworks

| Map Id | Site Name            | Date Opened | Year Closed | Location<br>Confidence | Distance | Direction |
|--------|----------------------|-------------|-------------|------------------------|----------|-----------|
| N/A    | No records in buffer |             |             |                        |          |           |

Former Gasworks Data Source: Collated from various historical sources

# **National Liquid Fuel Facilities**

National Liquid Fuel Facilties within the dataset buffer:

| Map<br>Id | Owner                | Name | Address | Suburb | Class | Operational Status | Operator | Revision<br>Date | Loc<br>Conf | Dist<br>(m) | Direction |
|-----------|----------------------|------|---------|--------|-------|--------------------|----------|------------------|-------------|-------------|-----------|
| N/A       | No records in buffer |      |         |        |       |                    |          |                  |             |             |           |

National Liquid Fuel Facilities Data Source: Geoscience Australia Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

#### **Historical Business Directories**

250 Drysdale Road, Little River, VIC 3211

# **Business Directory Records 1905-1991 Premise or Road Intersection Matches**

Universal Business Directory and Sands & McDougall Directory records, from years 1991, 1980, 1970, 1960, 1950, 1945, 1925 & 1905, mapped to a premise or road intersection within the dataset buffer:

| • | Map Id | Business Activity    | Premise | Ref No. | Year | Location<br>Confidence | Distance to<br>Property<br>Boundary or<br>Road<br>Intersection | Direction |
|---|--------|----------------------|---------|---------|------|------------------------|----------------------------------------------------------------|-----------|
|   |        | No records in buffer |         |         |      |                        |                                                                |           |

# **Business Directory Records 1905-1991 Road or Area Matches**

Universal Business Directory and Sands & McDougall Directory records, from years 1991, 1980, 1970, 1960, 1950, 1945, 1925 & 1905, mapped to a road or an area, within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published:

| Map Id | Business Activity    | Premise | Ref No. | Year | Location<br>Confidence | Distance to<br>Road<br>Corridor or<br>Area |
|--------|----------------------|---------|---------|------|------------------------|--------------------------------------------|
|        | No records in buffer |         |         |      |                        |                                            |

### **Historical Business Directories**

250 Drysdale Road, Little River, VIC 3211

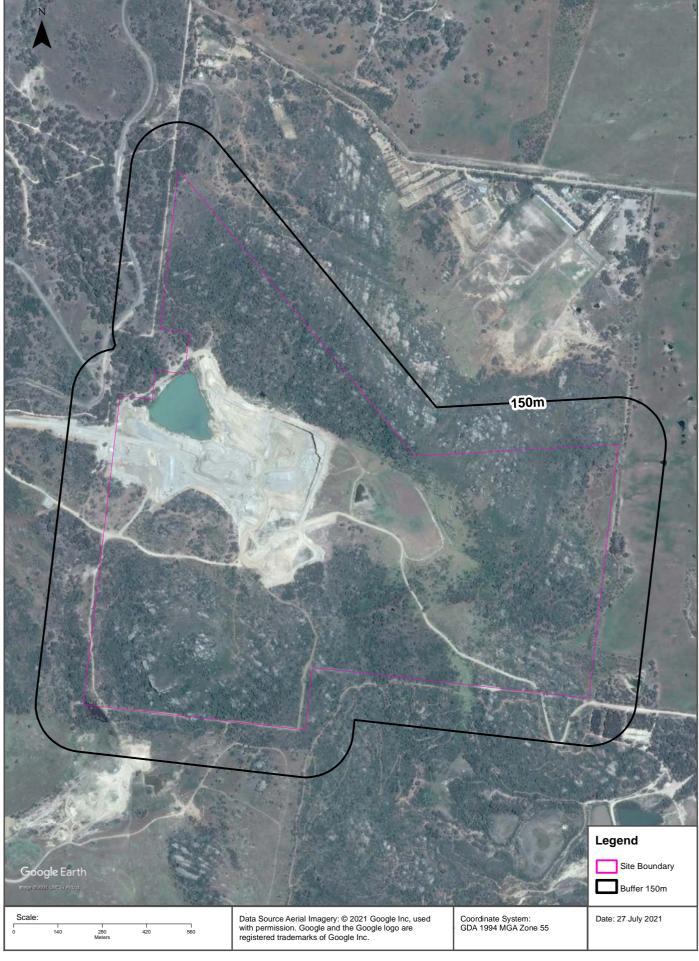
# **Dry Cleaners, Motor Garages & Service Stations Premise or Road Intersection Matches**

Dry Cleaners, Motor Garages & Service Stations from Sands & McDougall's Directories and UBD Business Directories, mapped to a premise or road intersection within the dataset buffer.

| Map Id | Business Activity    | Premise | Ref No. | Year | Location<br>Confidence | Direction |
|--------|----------------------|---------|---------|------|------------------------|-----------|
|        | No records in buffer |         |         |      |                        |           |

# **Dry Cleaners, Motor Garages & Service Stations Road or Area Matches**

Dry Cleaners, Motor Garages & Service Stations from UBD Business Directories and Sands & McDougall's Directories, mapped to a road or an area within the dataset buffer. Records are mapped to the road when a building number is not supplied, cannot be found, or the road has been renumbered since the directory was published.


| Map | d Business Activity  | Premise | Ref No. | Year | Location<br>Confidence | Distance to<br>Road<br>Corridor or<br>Area |
|-----|----------------------|---------|---------|------|------------------------|--------------------------------------------|
|     | No records in buffer |         |         |      |                        |                                            |

Aerial Imagery 2021 250 Drysdale Road, Little River, VIC 3211



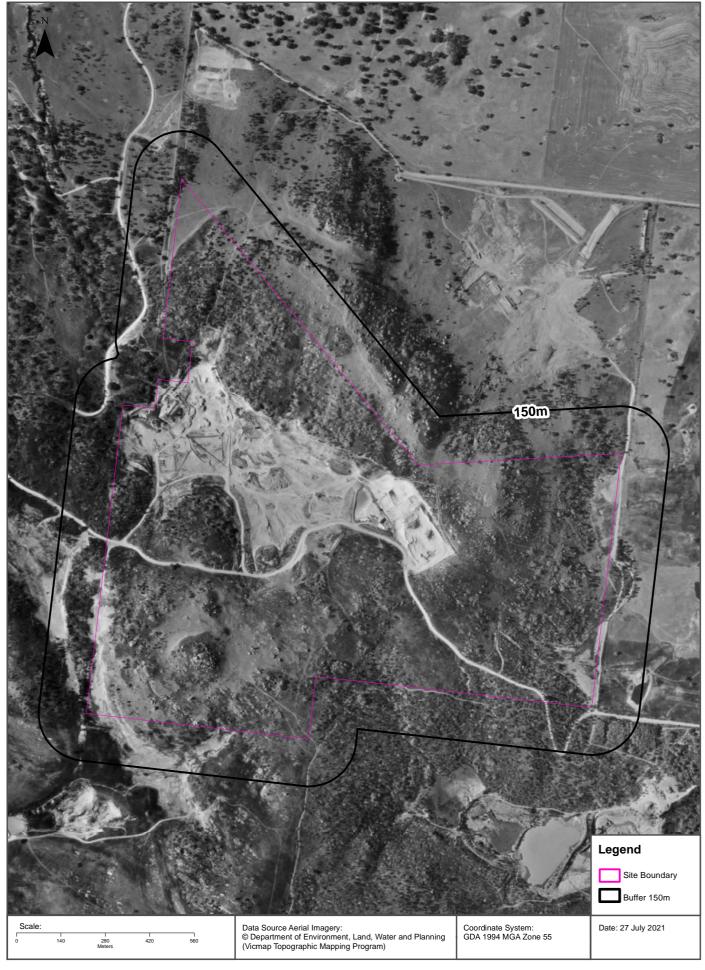




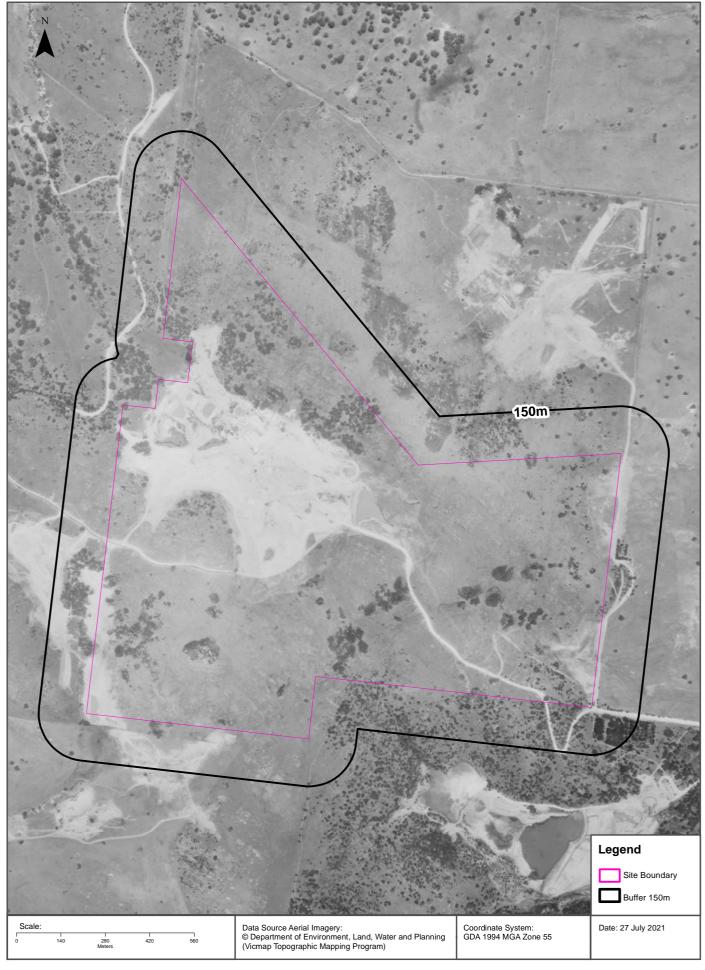




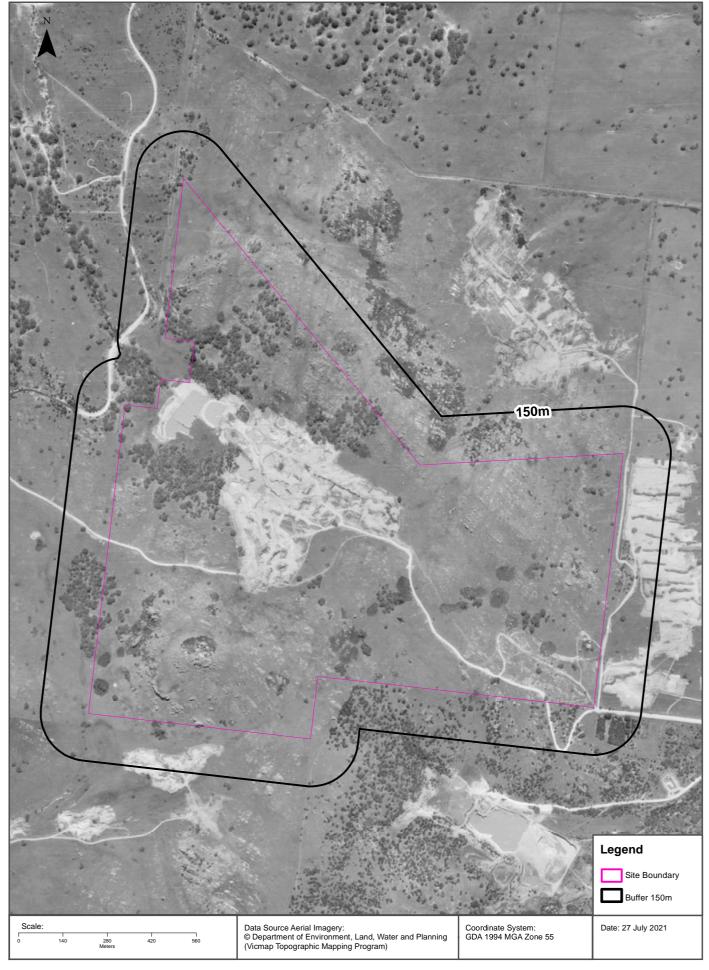




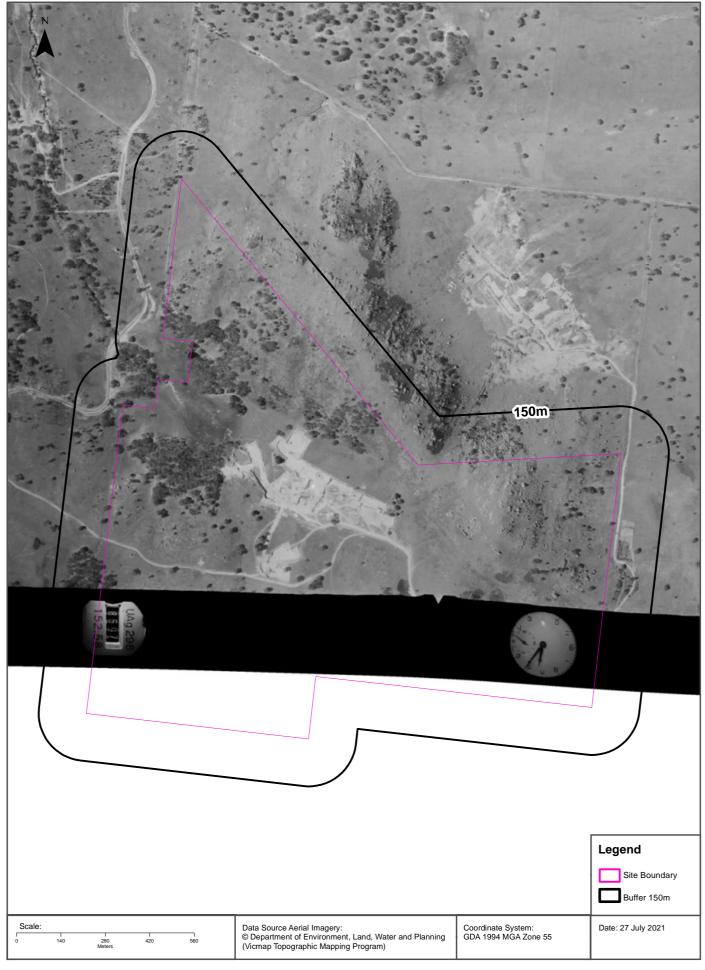


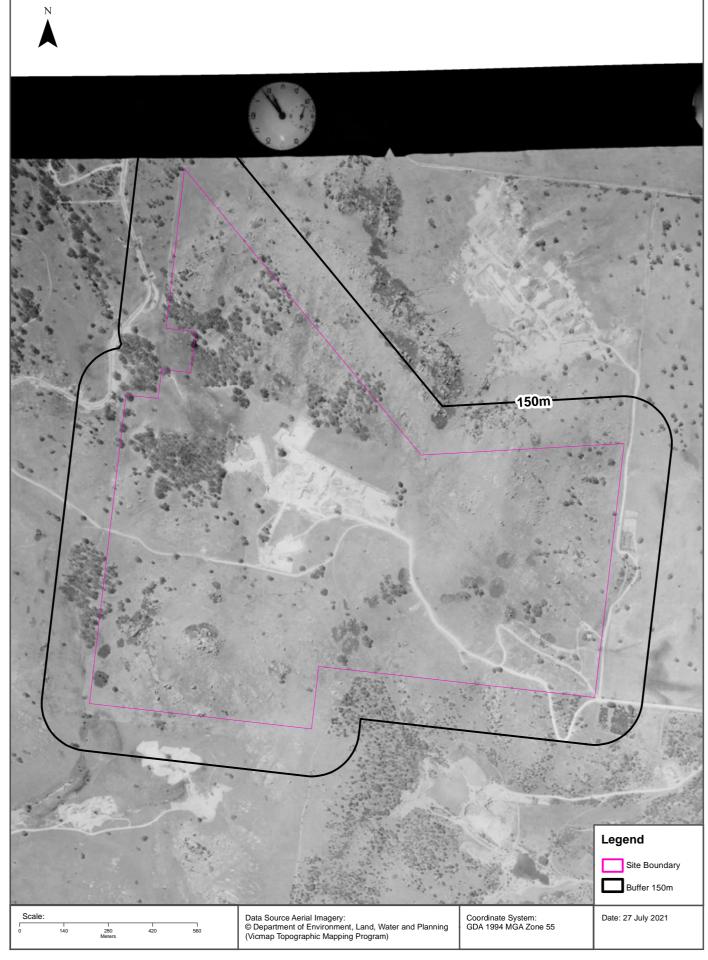




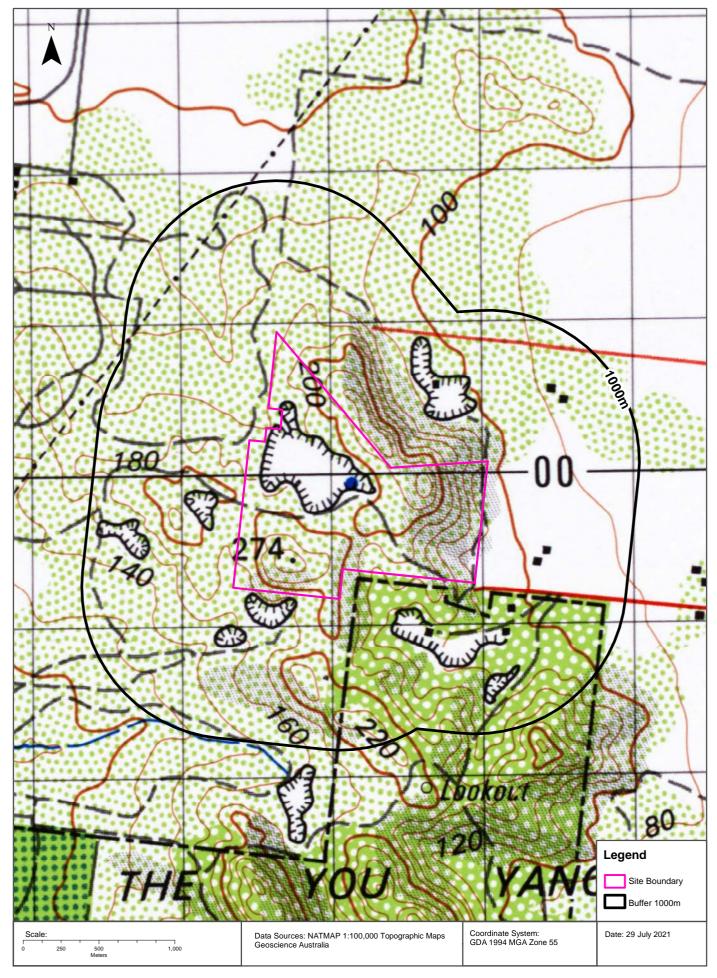





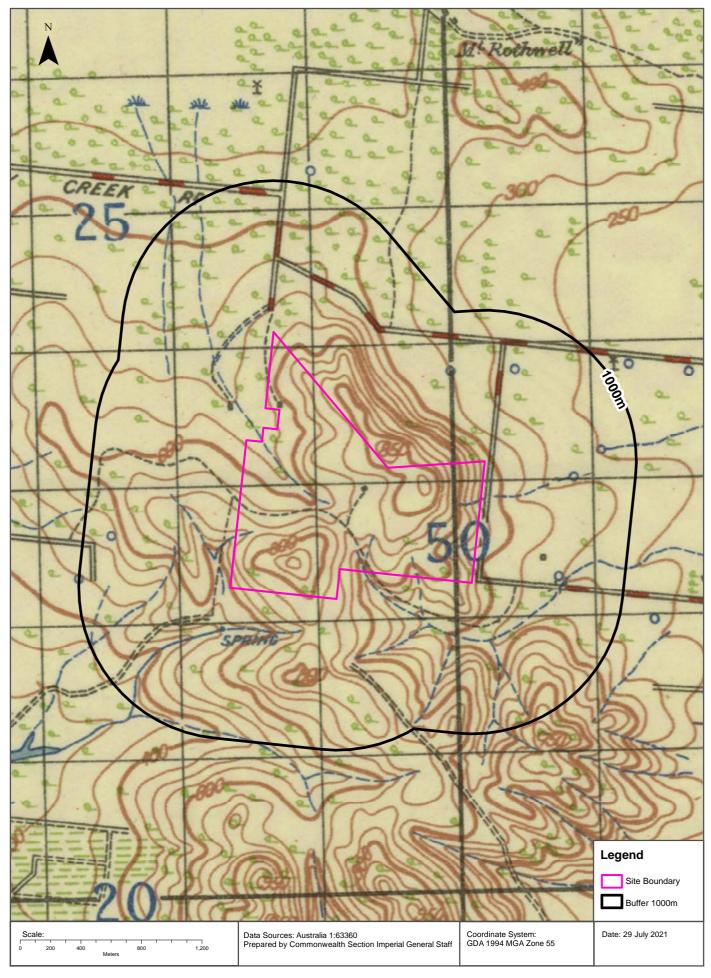




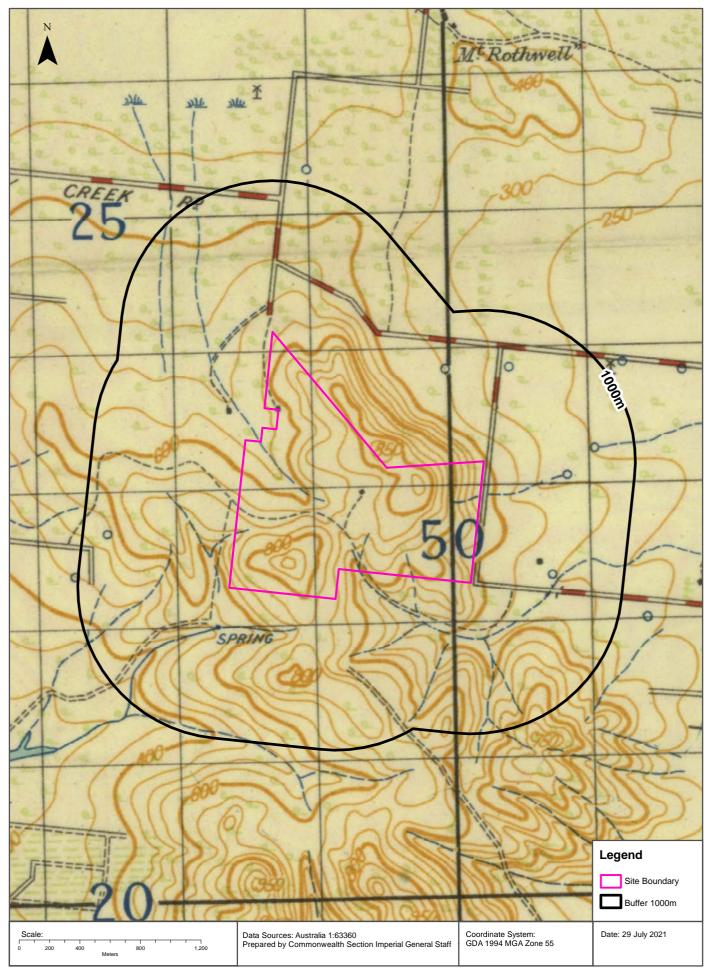






## **Historical Map 1981**

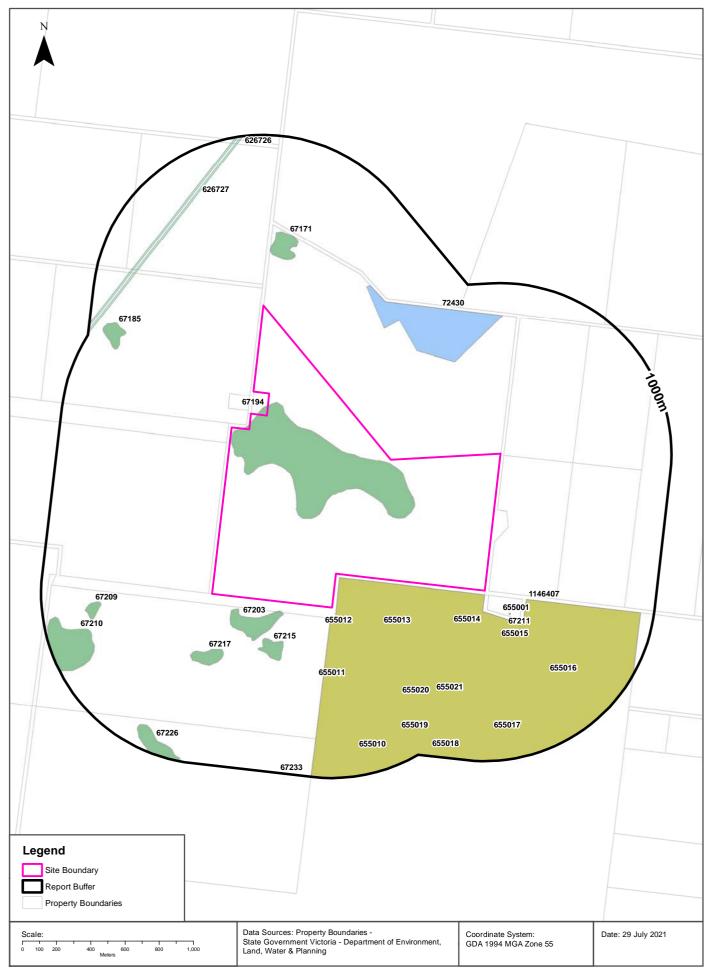





# **Historical Map c.1953**






# **Historical Map c.1936**





#### **Features of Interest**

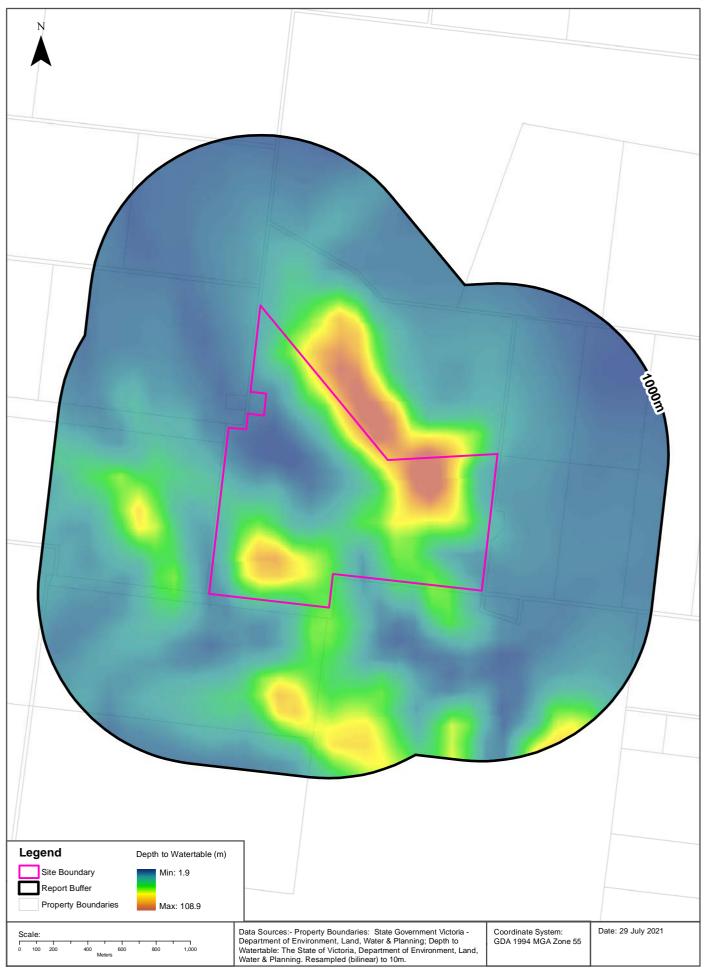




# **Features of Interest**

250 Drysdale Road, Little River, VIC 3211

#### **Features of Interest**


Features of Interest within the dataset buffer:

| Feature Id | Feature Type    | Feature Sub Type   | Name                                    | Distance | Direction  |
|------------|-----------------|--------------------|-----------------------------------------|----------|------------|
| 67194      | excavation site | quarry             |                                         | 0m       | Onsite     |
| 1146407    | reserve         | conservation park  | You Yangs R.P.                          | 21m      | South      |
| 67203      | excavation site | quarry             |                                         | 55m      | South West |
| 655012     | sign            | emergency marker   | YYR505                                  | 105m     | South      |
| 655001     | sign            | emergency marker   | YYR106                                  | 194m     | South East |
| 655014     | sign            | emergency marker   | YYR507                                  | 215m     | South East |
| 67215      | excavation site | quarry             |                                         | 225m     | South West |
| 655015     | sign            | emergency marker   | YYR508                                  | 242m     | South East |
| 67211      | excavation site | quarry             |                                         | 245m     | South East |
| 655013     | sign            | emergency marker   | YYR506                                  | 266m     | South      |
| 67171      | excavation site | quarry             |                                         | 293m     | North      |
| 67217      | excavation site | quarry             |                                         | 317m     | South West |
| 655011     | sign            | emergency marker   | YYR504                                  | 416m     | South      |
| 72430      | sport facility  | target range       | Ssaa Rifle Range And Paint Ball Complex | 458m     | North East |
| 655021     | sign            | emergency marker   | YYR514                                  | 623m     | South East |
| 655016     | sign            | emergency marker   | YYR509                                  | 642m     | South East |
| 67209      | excavation site | quarry             |                                         | 653m     | South West |
| 655020     | sign            | emergency marker   | YYR513                                  | 663m     | South      |
| 626726     | power line      | power transmission | Keilor-Geelong 1st                      | 707m     | North East |
| 626727     | power line      | power transmission | Keilor-Geelong 2nd                      | 728m     | North East |
| 67210      | excavation site | quarry             |                                         | 744m     | South West |
| 67185      | excavation site | quarry             |                                         | 782m     | North West |
| 655017     | sign            | emergency marker   | YYR510                                  | 825m     | South East |
| 655019     | sign            | emergency marker   | YYR512                                  | 846m     | South      |
| 655010     | sign            | emergency marker   | YYR503                                  | 855m     | South      |
| 67226      | excavation site | quarry             |                                         | 861m     | South West |
| 655018     | sign            | emergency marker   | YYR511                                  | 918m     | South      |
| 67233      | excavation site | quarry             |                                         | 997m     | South      |
|            |                 |                    |                                         |          |            |

Features of Interest Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

#### **Depth to Watertable**





## **Hydrogeology & Groundwater**

250 Drysdale Road, Little River, VIC 3211

#### **Hydrogeology**

Description of aquifers within the dataset buffer:

| Description                                                               | Distance | Direction |
|---------------------------------------------------------------------------|----------|-----------|
| Fractured or fissured, extensive aquifers of low to moderate productivity | 0m       | Onsite    |

Hydrogeology Map of Australia: Commonwealth of Australia (Geoscience Australia)
Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

#### **Groundwater Salinity**

On-site Groundwater Salinity:

| Groundwater Salinity | Percent Of Site Area |
|----------------------|----------------------|
| 3,500 - 7,000 mg/l   | 100                  |

#### **Depth to Watertable**

On-site Depth to Watertable:

| Depth to Watertable    | Percent Of Site Area |
|------------------------|----------------------|
| 20 to 50 metres        | 52                   |
| Greater than 50 metres | 21                   |
| 10 to 20 metres        | 17                   |
| 5 to 10 metres         | 5                    |
| Less than 5 metres     | 3                    |

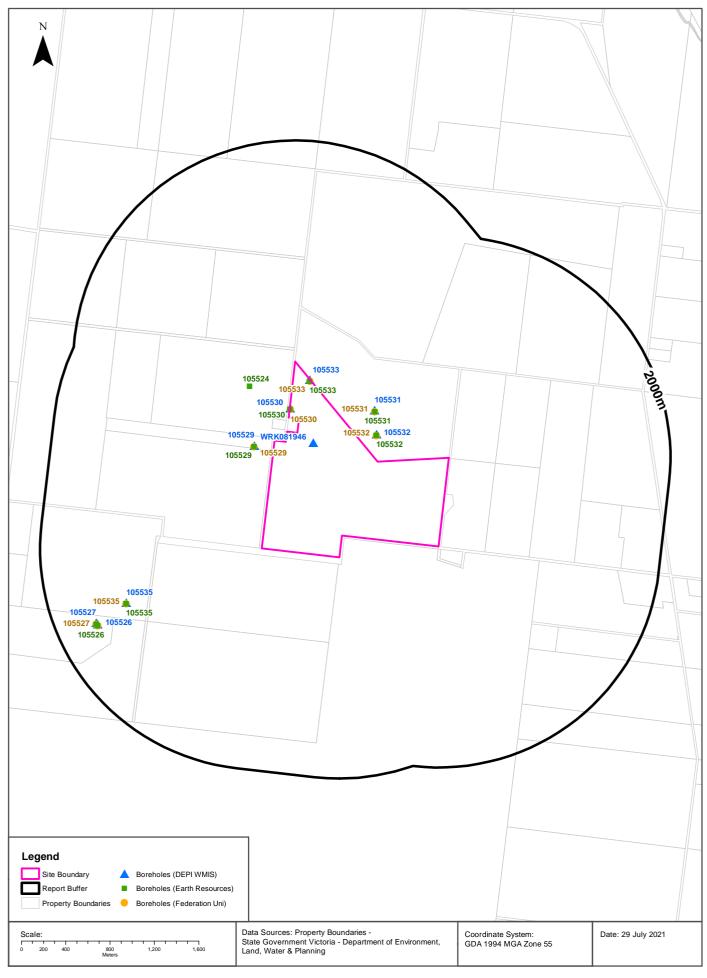
#### **Surface Elevation**

Approximate on-site Surface Elevation:

Surface Elevation
110 AHDm to 261 AHDm

#### **Basement Elevation**

Approximate on-site Basement Elevation:


Basement Elevation - Basement Rocks comprise Lower Palaeozoic basement rocks that form the highlands and the crystalline basement; and Mesozoic rocks of the Otway and Gippsland basins both outcropping and subsurface

98 AHDm to 261 AHDm

Groundwater Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

#### **Groundwater Boreholes**





## **Groundwater Boreholes**

250 Drysdale Road, Little River, VIC 3211

# **Boreholes (DELWP WMIS)**

Boreholes from the Department of Environment, Land, Water & Planning's Water Measurement Information System, within the dataset buffer:

| Bore Id   | Use Type           | Drillers Log                                                                                                                                                                                                                                                                      | Construction                                                                                                                                                                              | Latest<br>Water<br>Levels | Geology                                             | Completed<br>Date | Dist<br>(m) | Dir           |
|-----------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------|-------------------|-------------|---------------|
| WRK081946 | Industrial         |                                                                                                                                                                                                                                                                                   | 0.00m-0.00m OUTER LINING -<br>GRAVEL = Not Known                                                                                                                                          |                           |                                                     | 2014-09-20        | 0           | Onsite        |
| 105530    | Observation        | 0.00m-0.60m TOP SOIL<br>0.60m-5.70m GREY CLAY AND SAND<br>5.70m-7.90m BROWN GRANITE<br>7.90m-12.80m SPECKLED GRANITE<br>12.80m-17.00m GREY GRANITE<br>17.00m-35.00m LIGHT GREY GRANITE                                                                                            | 0.00m-0.80m INNER LINING -<br>CASING = Pvc<br>0.80m-8.96m INNER LINING -<br>SCREEN = Pvc<br>8.96m-9.56m INNER LINING -<br>CASING = Pvc<br>9.56m-35.00m INNER LINING -<br>SCREEN = Pvc     |                           | 0.80m-8.96m<br>Granite<br>9.56m-35.00m<br>Granite   | 1979-11-08        | 0           | Onsite        |
| 105533    | Observation        | 0.00m-0.60m TOP SOIL 0.60m-1.50m GREY SANDY CLAY 1.50m-2.40m BROWN SANDY CLAY 2.40m-3.60m GREY SANDY CLAY 3.60m-7.80m BROWN SANDY CLAY 7.80m-9.40m YELLOW CLAY 9.40m-14.70m CLAY AND GRAVEL 14.70m-15.70m YELLOW CLAY 15.70m-32.30m GREY GRANITE 32.30m-35.00m DECOMPOSED GRANITE | 0.00m-0.80m INNER LINING -<br>CASING = Pvc<br>0.80m-15.70m INNER LINING -<br>SCREEN = Pvc<br>15.70m-16.30m INNER LINING<br>- CASING = Pvc<br>16.30m-35.00m INNER LINING<br>- SCREEN = Pvc |                           | 0.80m-15.70m<br>Granite<br>16.30m-35.00m<br>Granite | 1979-11-08        | 0           | Onsite        |
| 105532    | Observation        | 0.00m-2.40m CLAY AND GRANITE<br>SAND<br>2.40m-3.90m GRANITE BOULDERS<br>3.90m-4.80m DECOMPOSED GRANITE<br>4.80m-17.00m GREY GRANITE<br>17.00m-17.90m GRANITE AND<br>QUARTZ<br>17.90m-29.20m GREY GRANITE<br>29.20m-31.70m GRANITE AND<br>QUARTZ<br>31.70m-35.00m GREY GRANITE     | 0.00m-5.56m INNER LINING -<br>CASING = Pvc<br>0.80m-4.96m INNER LINING -<br>SCREEN = Pvc<br>4.96m-35.00m INNER LINING -<br>SCREEN = Slotted Pvc                                           |                           | 0.80m-4.96m<br>Granite<br>4.96m-35.00m<br>Granite   | 1979-11-08        | 149         | North<br>East |
| 105529    | Domestic,<br>Stock | 0.00m-0.30m TOP SOIL 0.30m-1.50m BROWN CLAY 1.50m-3.30m YELLOW CLAY 3.30m-6.40m BROWN CLAY 6.40m-7.30m SHALE 7.30m-12.50m CLAY AND SHALE 12.50m-13.40m BASALT 13.40m-24.70m CLAY AND SHALE 24.70m-31.10m SANDY CLAY 31.10m-37.50m BASALT                                          | 0.00m-32.30m INNER LINING -<br>CASING = Steel<br>32.30m-37.50m INNER LINING<br>- SCREEN = Steel<br>31.50m-0.00m OUTER LINING<br>- GRAVEL = Seal                                           |                           | 32.30m-37.50m<br>Basalt                             | 1979-06-16        | 176         | North<br>West |
| 105531    | Observation        | 0.00m-0.60m CLAY AND SAND<br>0.60m-3.90m CLAY AND GRAVEL<br>3.90m-4.80m DECOMPOSED GRANITE<br>4.80m-23.70m GREY GRANITE<br>23.70m-35.00m DARK GREY GRANITE                                                                                                                        | 0.00m-5.59m INNER LINING -<br>CASING = Pvc<br>0.80m-4.99m INNER LINING -<br>SCREEN = Pvc<br>4.99m-35.00m INNER LINING -<br>SCREEN = Slotted Pvc                                           |                           | 0.80m-4.99m<br>Clay<br>4.99m-35.00m<br>Granite      | 1979-11-08        | 275         | North         |
| 105535    | Domestic,<br>Stock | 0.00m-6.20m GRAVEL IN CREAM<br>CLAY AND BLACK SILT<br>6.20m-16.00m WEATHERED<br>FRACTURED ROCK<br>16.00m-25.20m GRANITE (FRACT.)                                                                                                                                                  | 0.00m-12.00m INNER LINING -<br>CASING = Pvc<br>16.00m-25.20m INNER LINING<br>- SCREEN = Pvc                                                                                               |                           |                                                     | 1981-02-04        | 1316        | South<br>West |
| 105526    | Not Known          | 0.00m-1.00m TOP SOIL<br>1.00m-18.28m CEMENTED SAND AND<br>GRAVEL                                                                                                                                                                                                                  |                                                                                                                                                                                           |                           |                                                     | 1975-08-20        | 1629        | South<br>West |
| 105527    | Not Known          | 0.00m-1.00m TOP SOIL<br>1.00m-18.00m CEMENTED SAND AND<br>GRAVEL                                                                                                                                                                                                                  |                                                                                                                                                                                           |                           |                                                     | 1975-08-22        | 1636        | South<br>West |

Boreholes WMIS Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

#### **Groundwater Boreholes**

250 Drysdale Road, Little River, VIC 3211

## **Boreholes (Earth Resources Database)**

Boreholes from the Earth Resources dataset, within the dataset buffer:

| Bore Id | Bore Type | Company                               | Usage                               | Method                          | Status    | Drill Date | Depth | Elevation | Accuracy (m) | Dist<br>(m) | Direct        |
|---------|-----------|---------------------------------------|-------------------------------------|---------------------------------|-----------|------------|-------|-----------|--------------|-------------|---------------|
| 105530  |           | Private<br>Individual/Corporati<br>on | Groundwater<br>Observation          | Rotary<br>(diamond/drag<br>bit) |           | 08/11/1979 | 35.00 | 180.00    | 300          | 0           | Onsite        |
| 105533  |           | Private<br>Individual/Corporati<br>on | Groundwater<br>Observation          | Rotary<br>(diamond/drag<br>bit) |           | 08/11/1979 | 35.00 | 170.00    | 300          | 0           | Onsite        |
| 105532  |           | Private<br>Individual/Corporati<br>on | Groundwater<br>Observation          | Rotary<br>(diamond/drag<br>bit) |           | 08/11/1979 | 35.00 | 200.00    | 300          | 139         | North<br>East |
| 105529  |           | Private<br>Individual/Corporati<br>on | Domestic &<br>Stock water<br>supply | Air<br>Percussion/Air<br>Rotary |           | 16/06/1979 | 37.50 | 120.00    | 10           | 177         | North<br>West |
| 105531  |           | Private<br>Individual/Corporati<br>on | Groundwater<br>Observation          | Rotary<br>(diamond/drag<br>bit) |           | 08/11/1979 | 35.00 | 190.00    | 300          | 264         | North         |
| 105524  |           | Private<br>Individual/Corporati<br>on | Stock/Poultry water supply          |                                 |           | 10/02/1975 | 27.42 | 75.00     | 10           | 381         | North<br>West |
| 105535  |           | Private<br>Individual/Corporati<br>on | Domestic &<br>Stock water<br>supply | Rotary<br>(diamond/drag<br>bit) |           | 04/02/1981 | 25.20 | 80.00     | 10           | 1322        | South<br>West |
| 105526  |           | Private<br>Individual/Corporati<br>on | Irrigation                          |                                 | Abandoned | 21/08/1975 | 18.29 | 80.00     | 300          | 1637        | South<br>West |
| 105527  |           | Private<br>Individual/Corporati<br>on | Irrigation                          |                                 | Abandoned | 24/08/1975 | 18.28 | 80.00     | 300          | 1643        | South<br>West |

Boreholes Earth Resources Data Source: © The State of Victoria, Department of Economic Development, Jobs, Transport and Resources 2015. Creative Commons Attribution 3.0 Australia

## **Boreholes (Federation University)**

Boreholes from the Federation University Australia dataset, within the dataset buffer:

| Bore Id | Authority | Туре        | Uses        | Initial<br>TD | Log                                                                                                                                                                                                                                                                                                                                 | Dist<br>(m) | Direct |
|---------|-----------|-------------|-------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|
| 105530  |           | Groundwater | Observation |               | D: 0.000m-0.600m Top Soil D: 0.600m-5.700m Grey Clay And Sand D: 5.700m-7.900m Brown Granite D: 7.900m-12.800m Speckled Granite D: 12.800m-17.000m Grey Granite D: 17.000m-35.000m Light Grey Granite                                                                                                                               | 0           | Onsite |
| 105533  |           | Groundwater | Observation |               | D: 0.000m-0.600m Top Soil D: 0.600m-1.500m Grey Sandy Clay D: 1.500m-2.400m Brown Sandy Clay D: 2.400m-3.600m Grey Sandy Clay D: 3.600m-7.800m Brown Sandy Clay D: 7.800m-9.400m Yellow Clay D: 9.400m-14.700m Clay And Gravel D: 14.700m-15.700m Yellow Clay D: 15.700m-32.300m Grey Granite D: 32.300m-35.000m Decomposed Granite | 0           | Onsite |

| Bore Id | Authority                   | Туре        | Uses              | Initial<br>TD | Log                                                                                                                                                                                                                                                                                        | Dist<br>(m) | Direct        |
|---------|-----------------------------|-------------|-------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|
| 105532  |                             | Groundwater | Observation       |               | D: 0.000m-2.400m Clay And Granite Sand D: 2.400m-3.900m Granite Boulders D: 3.900m-4.800m Decomposed Granite D: 4.800m-17.000m Grey Granite D: 17.000m-17.900m Granite And Quartz D: 17.900m-29.200m Grey Granite D: 29.200m-31.700m Granite And Quartz D: 31.700m-35.000m Grey Granite    | 139         | North<br>East |
| 105529  |                             | Groundwater | Domestic<br>Stock |               | D: 0.000m-0.300m Top Soil D: 0.300m-1.500m Brown Clay D: 1.500m-3.300m Yellow Clay D: 3.300m-6.400m Brown Clay D: 6.400m-7.300m Shale D: 7.300m-12.500m Clay And Shale D: 12.500m-13.400m Basalt D: 13.400m-24.700m Clay And Shale D: 24.700m-31.100m Sandy Clay D: 31.100m-37.500m Basalt | 176         | North<br>West |
| 105531  |                             | Groundwater | Observation       |               | D: 0.000m-0.600m Clay And Sand D: 0.600m-3.900m Clay And Gravel D: 3.900m-4.800m Decomposed Granite D: 4.800m-23.700m Grey Granite D: 23.700m-35.000m Dark Grey Granite                                                                                                                    | 265         | North         |
| 105535  | Private<br>Landholders Bore | Groundwater | Domestic<br>Stock |               | D: 0.000m-6.200m Gravel In Cream Clay And Black Silt<br>D: 6.200m-16.000m Weathered Fractured Rock<br>D: 16.000m-25.200m Granite (Fract.)                                                                                                                                                  | 1322        | South<br>West |
| 105526  | Private<br>Landholders Bore | Groundwater |                   |               | D: 0.000m-1.000m Top Soil<br>D: 1.000m-18.280m Cemented Sand And Gravel                                                                                                                                                                                                                    | 1636        | South<br>West |
| 105527  | Private<br>Landholders Bore | Groundwater |                   |               | D: 0.000m-1.000m Top Soil<br>D: 1.000m-18.000m Cemented Sand And Gravel                                                                                                                                                                                                                    | 1643        | South<br>West |

Boreholes FedUni Data Source: © Federation University Australia

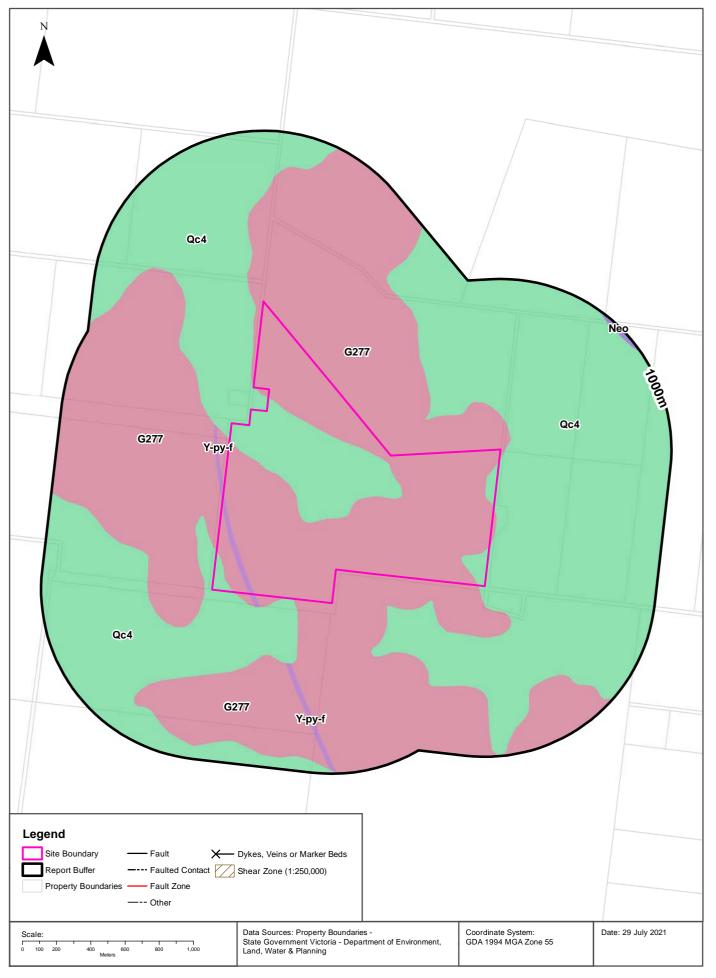
## **Historical Mining Activity - Shafts**

250 Drysdale Road, Little River, VIC 3211

#### **Historical Mining Activity - Shafts**

Mine Shaft Locations were collected by a variety of methods from 1869 in some areas of the state, mainly concentrating in Ballarat and Bendigo. In places a shaft may be recorded multiple times with a different source. In cases where several shaft locations are shown close together (generally with separations less than stated position errors) and they have different sources, it is possible that one shaft has been mapped several times. In cases where several shaft locations are shown close together but they have the same information source, it is possible that each shaft location represents a different shaft on the ground.

Historical Mine Shafts within the dataset buffer:


| Map Id | Name                 | Source | Depth (m) | Collar (ft) | Fill/Cap<br>Method | Location<br>Desc | Location<br>Accuracy | Distance | Direction |
|--------|----------------------|--------|-----------|-------------|--------------------|------------------|----------------------|----------|-----------|
| N/A    | No records in buffer |        |           |             |                    |                  |                      |          |           |

Historical Mining Activity Data Custodian: State Government Victoria - Dept of Economic Development, Jobs, Transport & Resources

Creative Commons 4.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/4.0/

# Geology 1:50,000





# **Geology**

250 Drysdale Road, Little River, VIC 3211

# **Geological Units**

What are the Geological Units onsite?

| Symbol | Name                                            | Description                                                                         | Geological<br>Age                    | Lithology           | Dataset  |
|--------|-------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------------|---------------------|----------|
| G277   | You Yangs Granite (G277): generic               | Hornblende granite: coarse grained, K-feldspar phyric; I-type.                      | Late Devonian<br>to Late<br>Devonian | granite (all)       | 1:50,000 |
| Qc4    | granite-derived colluvium (Qc4): generic        | Quartz and feldspar sand: well sorted, fine to medium grained; derived from granite | Pleistocene to<br>Holocene           | sand (all)          | 1:50,000 |
| Y-py-f | dyke, feldspar<br>porphyry (Y-py-f):<br>generic | Feldspar porphyry dyke                                                              | Paleozoic to<br>Mesozoic             | plutonic rock (all) | 1:50,000 |

What are the Geological Units within the dataset buffer?

| Symbol | Name                                                     | Description                                                                                                                                                                                                                         | Geological<br>Age                    | Lithology                                                                                                                                            | Dataset  |
|--------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| G277   | You Yangs Granite<br>(G277): generic                     | Hornblende granite: coarse grained, K-feldspar phyric; I-type.                                                                                                                                                                      | Late Devonian<br>to Late<br>Devonian | granite (all)                                                                                                                                        | 1:50,000 |
| Neo    | Newer Volcanic<br>Group - basalt flows<br>(Neo): generic | Olivine tholeiite, quartz tholeiite, basanite, basaltic icelandite, hawaiite, mugearite, minor scoria and ash, fluvial sediments: tholeiitic to alkaline; includes sheet flows and valley flows and intercalated gravel, sand, clay | Miocene to<br>Holocene               | alkali basalt<br>(major<br>proportion);<br>tholeiitic basalt<br>(major<br>proportion);<br>alluvium (minor<br>proportion); tuff<br>(minor proportion) | 1:50,000 |
| Qc4    | granite-derived colluvium (Qc4): generic                 | Quartz and feldspar sand: well sorted, fine to medium grained; derived from granite                                                                                                                                                 | Pleistocene to<br>Holocene           | sand (all)                                                                                                                                           | 1:50,000 |
| Y-py-f | dyke, feldspar<br>porphyry (Y-py-f):<br>generic          | Feldspar porphyry dyke                                                                                                                                                                                                              | Paleozoic to<br>Mesozoic             | plutonic rock (all)                                                                                                                                  | 1:50,000 |

Geology Data Custodian: State Government Victoria - Dept of Economic Development, Jobs, Transport & Resources Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

## **Geology**

250 Drysdale Road, Little River, VIC 3211

#### **Geological Structures**

What are the Geological Faults or Faulted Contacts onsite?

| Map Id         | Туре | Name | Contact | Positional<br>Accuracy | Dataset  |
|----------------|------|------|---------|------------------------|----------|
| No<br>features |      |      |         |                        | 1:50,000 |

What are the Dykes, Marker Beds and Veins onsite?

| Map Id         | Туре | Name | Description | Positional<br>Accuracy | Dataset  |
|----------------|------|------|-------------|------------------------|----------|
| No<br>features |      |      |             |                        | 1:50,000 |

What are the Shear Zones onsite (1:250,000 scale)?

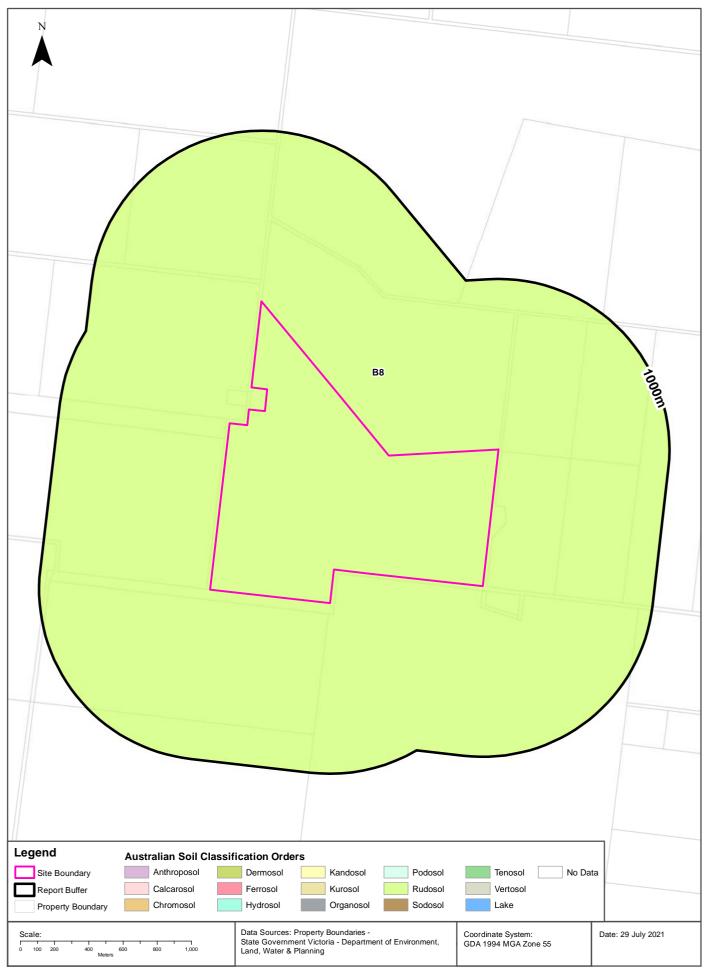
| Map Id         | Туре | Name | Description | Positional<br>Accuracy | Dataset   |
|----------------|------|------|-------------|------------------------|-----------|
| No<br>features |      |      |             |                        | 1:250,000 |

What are the Geological Faults or Faulted Contacts within the dataset buffer?

| Map Id         | Туре | Name | Contact | Positional<br>Accuracy | Dataset  |
|----------------|------|------|---------|------------------------|----------|
| No<br>features |      |      |         |                        | 1:50,000 |

What are the Dykes, Marker Beds and Veins within the dataset buffer?

| Map Id         | Туре | Name | Description | Positional<br>Accuracy | Dataset  |
|----------------|------|------|-------------|------------------------|----------|
| No<br>features |      |      |             |                        | 1:50,000 |


What are the Shear Zones within the dataset buffer (1:250,000 scale)?

| Map Id         | Туре | Name | Description | Positional<br>Accuracy | Dataset   |
|----------------|------|------|-------------|------------------------|-----------|
| No<br>features |      |      |             |                        | 1:250,000 |

Geology Data Custodian: State Government Victoria - Dept of Economic Development, Jobs, Transport & Resources Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

#### **Atlas of Australian Soils**



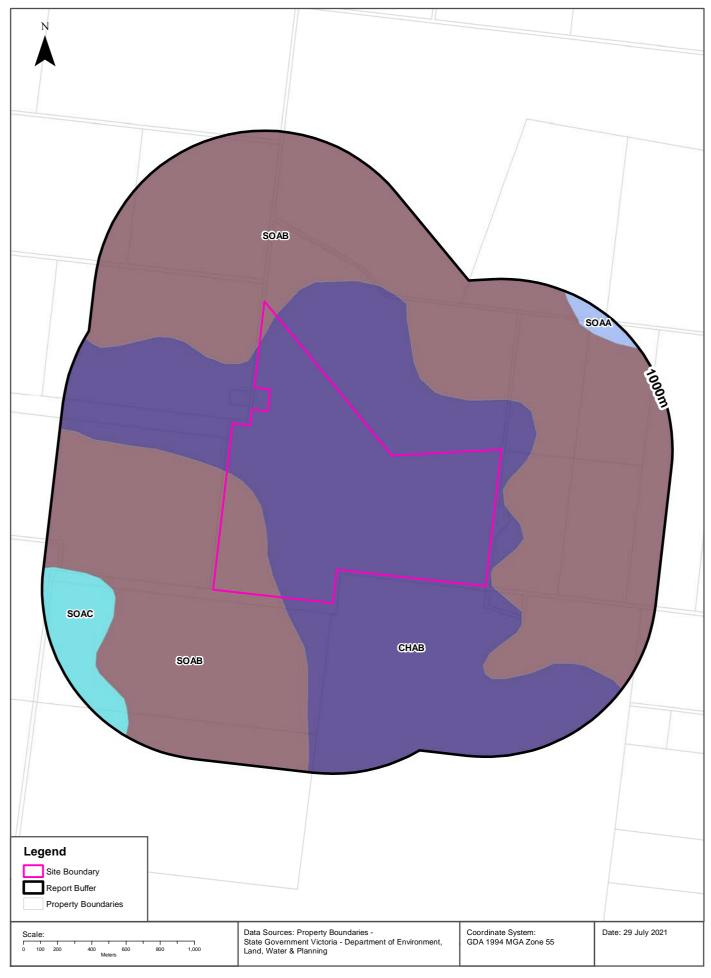


# **Soil Landscapes**

250 Drysdale Road, Little River, VIC 3211

#### **Atlas of Australian Soils**

Australian soil types within the dataset buffer:


| Symbol | Soil Order | Map Unit Description                                                                                                                                                                                                                                                   | Distance |
|--------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| B8     | Rudosol    | Hilly: steep hills of siliceous sands (Uc1.2) with many rock outcrops, and between the hills low ridges of hard yellow mottled soils (Dy3.4) with some rock outcrops, with hard alkaline yellow mottled soils (Dy3.43) on the colluvial apron flanking the whole urea. | Om       |

Atlas of Australian Soils: CSIRO

Creative Commons Attribution 4.0 International © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/

# Victorian Soil Type Mapping 250 Drysdale Road, Little River, VIC 3211

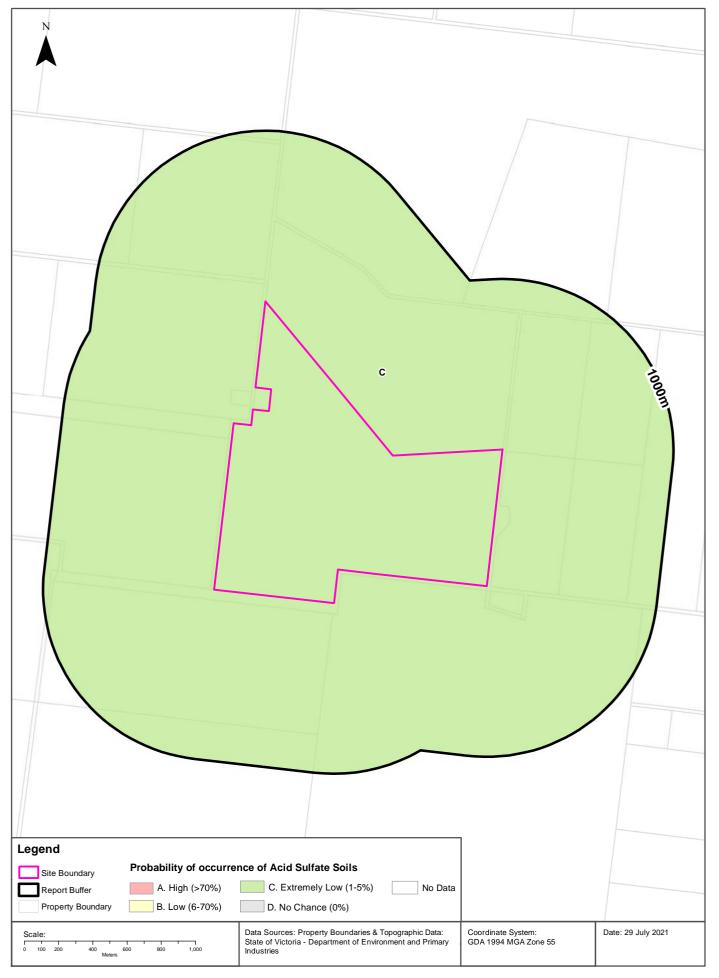




# **Soils Landscapes**

250 Drysdale Road, Little River, VIC 3211

## **Victorian Soil Type Mapping**


Victorian Soil Types within the dataset buffer:

| Symbol | Description      | Distance |
|--------|------------------|----------|
| СНАВ   | Brown Chromosols | 0m       |
| SOAB   | Brown Sodosols   | 0m       |
| SOAC   | Yellow Sodosols  | 572m     |
| SOAA   | Red Sodosols     | 859m     |

Victorian Soil Type Mapping Data Source: Department of Economic Development, Jobs, Transport and Resources Creative Commons Attribution 4.0 International © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/

#### **Atlas of Australian Acid Sulfate Soils**





## **Acid Sulfate Soils**

250 Drysdale Road, Little River, VIC 3211

#### **Atlas of Australian Acid Sulfate Soils**

Atlas of Australian Acid Sulfate Soil categories within the dataset buffer:

| PROBCLASS | Description                                                                                                   | Distance |
|-----------|---------------------------------------------------------------------------------------------------------------|----------|
| С         | Extremely low probability of occurrence. 1-5% chance of occurrence with occurrences in small localised areas. | 0m       |

Atlas of Australian Acid Sulfate Soils Data Source: CSIRO

Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

#### **Acid Sulfate Soils**

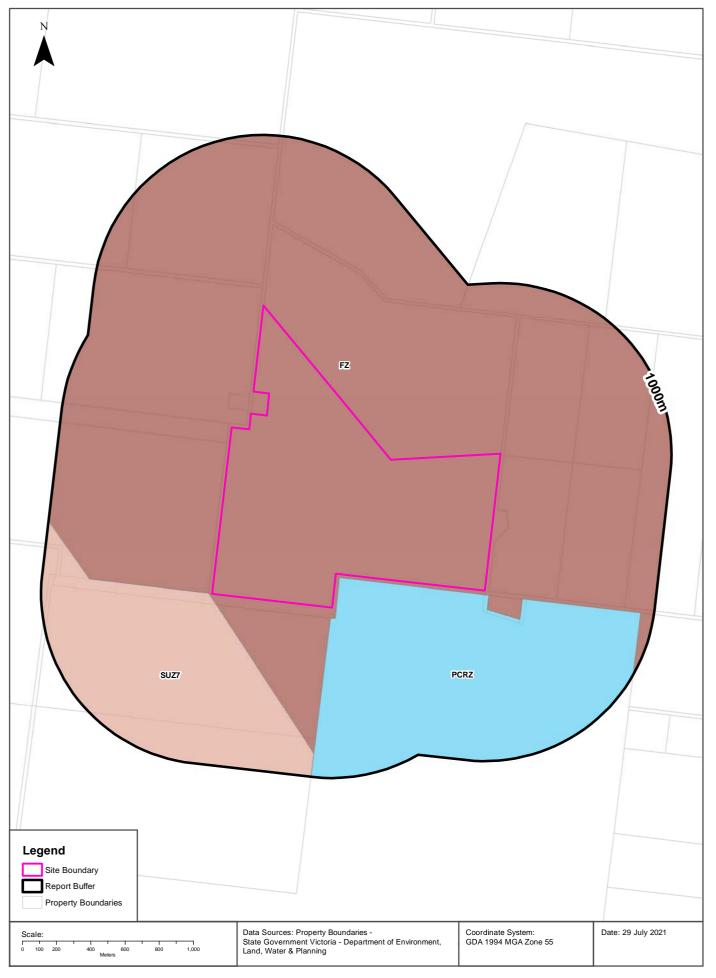
250 Drysdale Road, Little River, VIC 3211

#### **Coastal Acid Sulfate Soils**

What are the on-site Coastal Acid Sulfate Soil types?

#### **Coastal Acid Sulfate Soil Types**

There are no Acid Sulfate areas onsite


What are the Coastal Acid Sulfate Soil types within the dataset buffer?

| Coastal Acid Sulfate Soil Types                          | Distance | Direction |
|----------------------------------------------------------|----------|-----------|
| There are no Acid Sulfate areas within the report buffer |          |           |

 $Coastal\ Acid\ Sulfate\ Data\ Custodian:\ State\ Government\ Victoria\ -\ Dept\ of\ Environment,\ Land,\ Water\ \&\ Planning\ Creative\ Commons\ 3.0\ \\ \\ \\ \\ \\ Commonwealth\ of\ Australia\ http://creativecommons.org/licenses/by/3.0/au/deed.en$ 

## **Planning Zones**

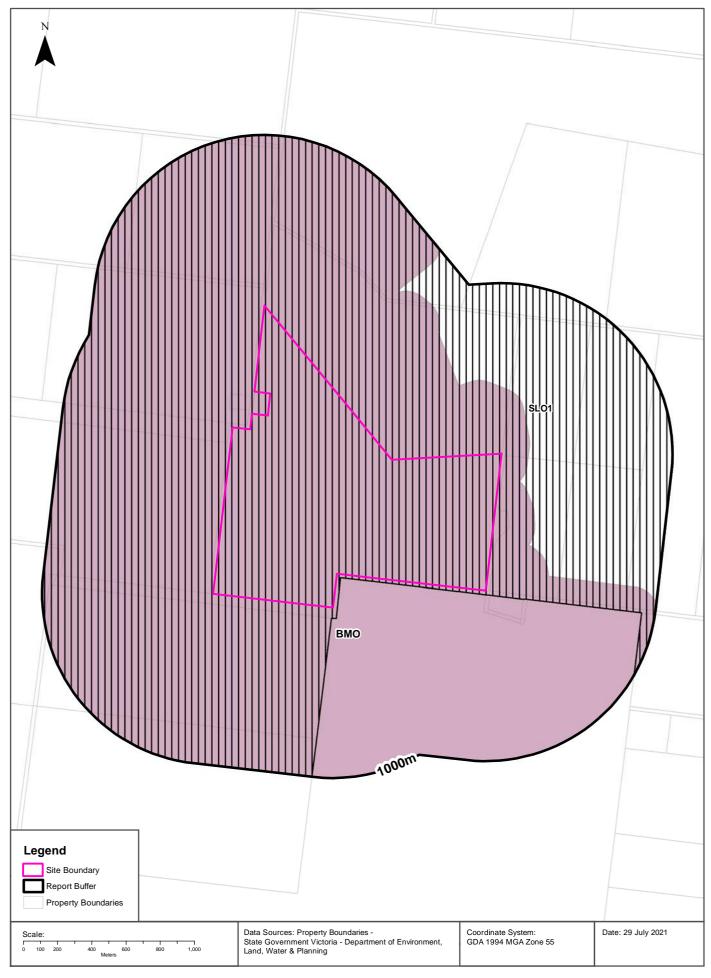




# **Planning**

250 Drysdale Road, Little River, VIC 3211

# **Planning Zones**


Planning zones within the dataset buffer:

| Zone Code | Description                           | Distance | Direction  |
|-----------|---------------------------------------|----------|------------|
| FZ        | FARMING ZONE                          | Om       | Onsite     |
| SUZ7      | SPECIAL USE ZONE - SCHEDULE 7         | 17m      | South West |
| PCRZ      | PUBLIC CONSERVATION AND RESOURCE ZONE | 21m      | South      |

Planning Zone Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

## **Planning Overlays**





# **Planning**

250 Drysdale Road, Little River, VIC 3211

# **Planning Overlays**

Planning overlays within the dataset buffer:

| Zone Code | Description                                | Distance | Direction |
|-----------|--------------------------------------------|----------|-----------|
| ВМО       | BUSHFIRE MANAGEMENT OVERLAY                | Om       | Onsite    |
| SLO1      | SIGNIFICANT LANDSCAPE OVERLAY - SCHEDULE 1 | 0m       | Onsite    |

Planning Overlay Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

## **Heritage**

250 Drysdale Road, Little River, VIC 3211

#### **Commonwealth Heritage List**

What are the Commonwealth Heritage List Items located within the dataset buffer?

| Place Id | Name                 | Address | Place File No | Class | Status | Register<br>Date | Distance | Direction |
|----------|----------------------|---------|---------------|-------|--------|------------------|----------|-----------|
| N/A      | No records in buffer |         |               |       |        |                  |          |           |

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

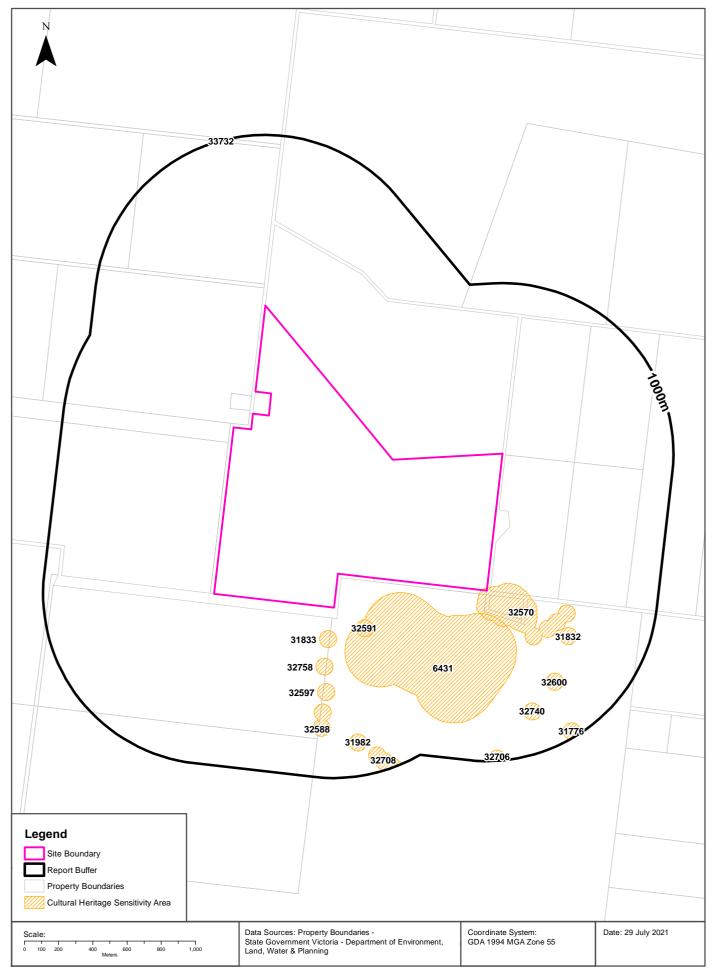
## **National Heritage List**

What are the National Heritage List Items located within the dataset buffer? Note. Please click on Place Id to activate a hyperlink to online website.

| Place Id | Name                 | Address | Place File No | Class | Status | Register<br>Date | Distance | Direction |
|----------|----------------------|---------|---------------|-------|--------|------------------|----------|-----------|
| N/A      | No records in buffer |         |               |       |        |                  |          |           |

Heritage Data Source: Australian Government Department of the Environment and Energy - Heritage Branch Creative Commons 3.0 © Commonwealth of Australia https://creativecommons.org/licenses/by/3.0/au/deed.en

## Victorian Heritage Register


What are the Victorian Heritage Register items located within the dataset buffer?:

| VHR Number | Description              | Distance | Direction |
|------------|--------------------------|----------|-----------|
| N/A        | No records within buffer |          |           |

Victorian Heritage Register Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons Attribution 4.0 International © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/

## **Cultural Heritage Sensitivity**

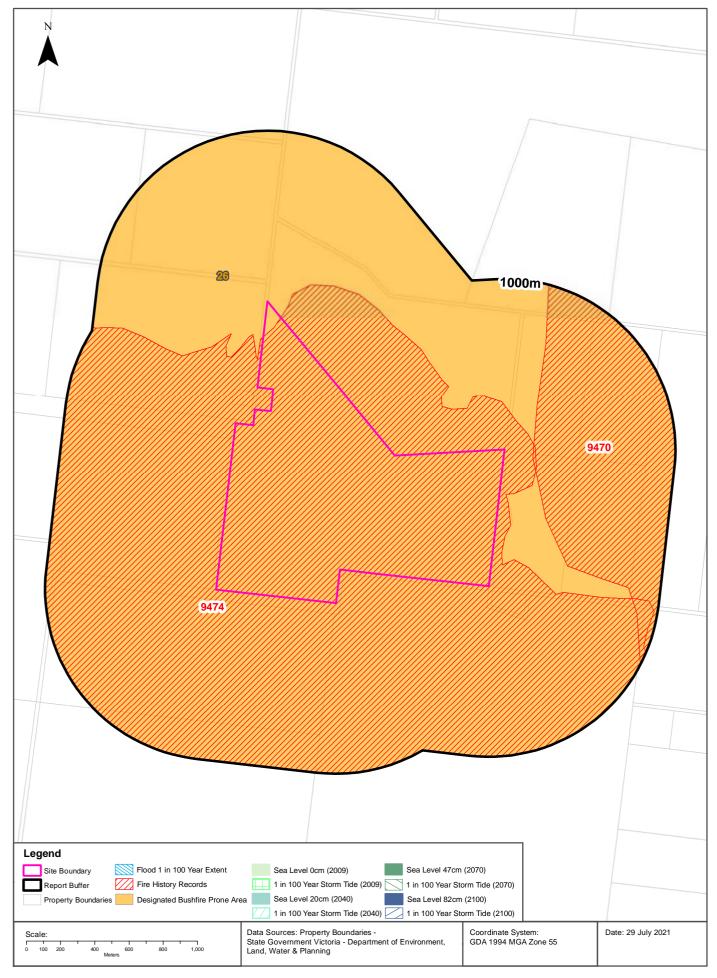




# Heritage

250 Drysdale Road, Little River, VIC 3211

## **Cultural Heritage Sensitivity**


Areas of Cultural Heritage Sensitivity as specified in Division 3 of Part 2 in the Victorian Aboriginal Heritage Regulations 2018, within the dataset buffer:

| Map Id | Distance | Direction  |
|--------|----------|------------|
| 32570  | 0m       | South East |
| 6431   | 66m      | South East |
| 31833  | 137m     | South      |
| 32591  | 167m     | South      |
| 32758  | 301m     | South      |
| 32597  | 448m     | South      |
| 31832  | 498m     | South East |
| 32588  | 569m     | South      |
| 32600  | 617m     | South East |
| 32740  | 708m     | South East |
| 31982  | 754m     | South      |
| 32708  | 853m     | South      |
| 31776  | 913m     | South East |
| 32706  | 937m     | South East |
| 33732  | 996m     | North      |

Cultural Heritage Sensitivity Data Custodian: State Government Victoria - Department of Premier and Cabinet Creative Commons Attribution 4.0 International © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/

#### **Natural Hazards**





#### **Natural Hazards**

250 Drysdale Road, Little River, VIC 3211

#### **Bushfire Prone Areas**

What are the designated bushfire prone areas within the dataset buffer?

| Map ID | Feature                           | Plan No      | LGA             | <b>Gazetted Date</b> | Distance | Direction |
|--------|-----------------------------------|--------------|-----------------|----------------------|----------|-----------|
| 26     | Designated Bushfire Prone<br>Area | LEGL./20-480 | GREATER GEELONG | 01/02/2021           | 0m       | Onsite    |

Bushfire Prone Area Data Custodian: State Government Victoria - Dept of Transport, Planning & Local Infrastructure Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

#### **Fire History**

What are the fire history records of fires primarily on public land, within the dataset buffer?

| Мар | ld   | Fire Type | Fire Key   | Season | Fire No | Fire Name | Treatment | Fire Cover | Start Date | Dist<br>(m) | Direction |
|-----|------|-----------|------------|--------|---------|-----------|-----------|------------|------------|-------------|-----------|
|     | 9474 | BUSHFIRE  | W198599999 | 1985   | 999     | Anakie    | FIRE      |            |            | 0m          | Onsite    |
|     | 9470 | BUSHFIRE  | W197799999 | 1977   | 999     |           | FIRE      |            |            | 165m        | East      |

Fire History Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

## Flood - 1 in 100 year modelled flood extent

What 1 in 100 year flood extent features exist within the dataset buffer?

| Feature | Source                   | Method | Scale | Modified Date | Distance | Direction |
|---------|--------------------------|--------|-------|---------------|----------|-----------|
| N/A     | No records within buffer |        |       |               |          |           |

Flood Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

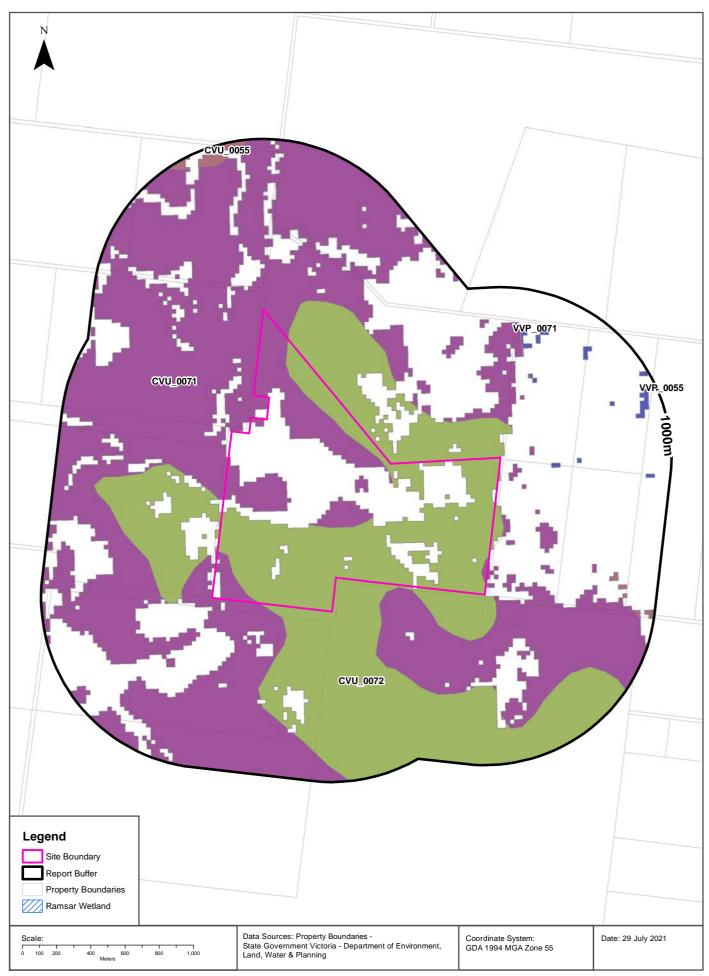
### **Natural Hazards**

250 Drysdale Road, Little River, VIC 3211

### **Victorian Coastal Inundation Sea Level Rise**

What coastal inundation sea level rise features exist within the dataset buffer?

| Description              | Distance | Direction |
|--------------------------|----------|-----------|
| No records within buffer |          |           |


Victorian Coastal Inundation Sea Level Rise Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning

Creative Commons Attribution 4.0 International © Commonwealth of Australia http://creativecommons.org/licenses/by/4.0/

## **Ecological Constraints - Native Vegetation 2005 & Ramsar Wetlands**

250 Drysdale Road, Little River, VIC 3211





## **Ecological Constraints**

250 Drysdale Road, Little River, VIC 3211

## **Native Vegetation (Modelled 2005 Ecological Vegetation Classes)**

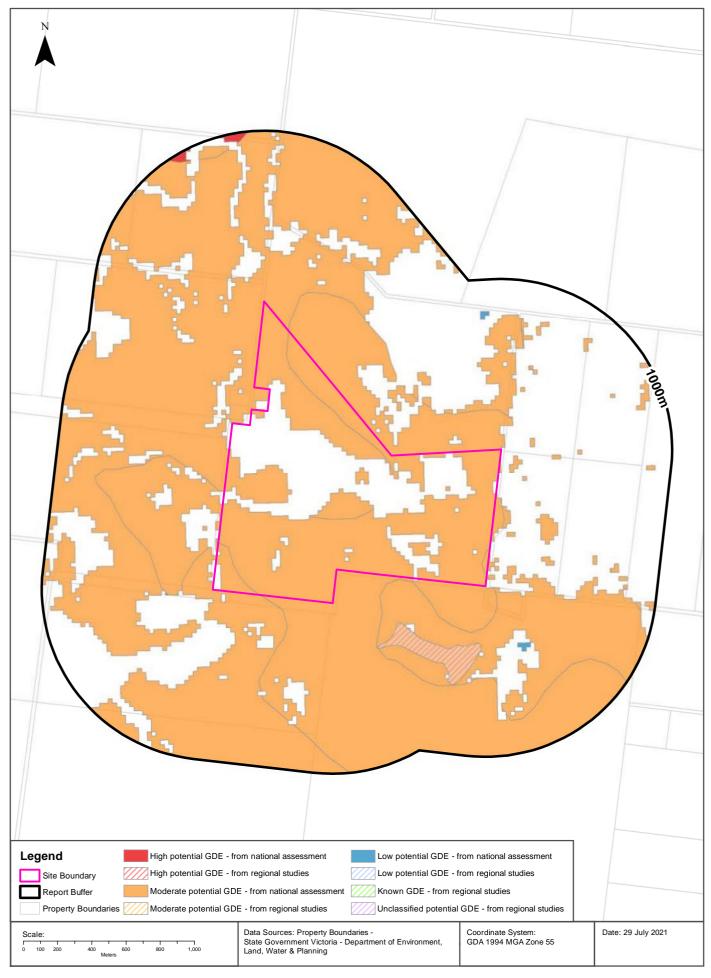
What native vegetation exists within the dataset buffer?

| Veg Code | EVC Name                    | EVCCode | Group                                                          | Subgroup        | Bioregion                       | Conservation<br>Status | Geographic<br>Occurance | Distance |
|----------|-----------------------------|---------|----------------------------------------------------------------|-----------------|---------------------------------|------------------------|-------------------------|----------|
| CVU_0071 | Hills Herb-rich<br>Woodland | 0071    | Lower Slopes or<br>Hills Woodlands                             | Herb-rich       | Central<br>Victorian<br>Uplands | Vulnerable             | Common                  | 0m       |
| CVU_0072 | Granitic Hills<br>Woodland  | 0072    | Box Ironbark<br>Forests or<br>dry/lower fertility<br>Woodlands |                 | Central<br>Victorian<br>Uplands | Depleted               | Common                  | 0m       |
| VVP_0055 | Plains Grassy<br>Woodland   | 0055    | Plains<br>Woodlands or<br>Forests                              | Freely-draining | Victorian<br>Volcanic<br>Plain  | Endangered             | Common                  | 297m     |
| CVU_0055 | Plains Grassy<br>Woodland   | 0055    | Plains<br>Woodlands or<br>Forests                              | Freely-draining | Central<br>Victorian<br>Uplands | Endangered             | Common                  | 299m     |
| VVP_0071 | Hills Herb-rich<br>Woodland | 0071    | Lower Slopes or<br>Hills Woodlands                             | Herb-rich       | Victorian<br>Volcanic<br>Plain  | Vulnerable             | Naturally<br>Restricted | 687m     |

Native Vegetation Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

#### **Ramsar Wetlands**

What Ramsar wetland areas exist within the dataset buffer?


| Map ID | Site Name                | Lake Name | Distance | Direction |
|--------|--------------------------|-----------|----------|-----------|
| N/A    | No records within buffer |           |          |           |

Ramsar Wetland Area Data Custodian: State Government Victoria - Dept of Environment, Land, Water & Planning Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

### **Ecological Constraints - Groundwater Dependent Ecosystems Atlas**

250 Drysdale Road, Little River, VIC 3211

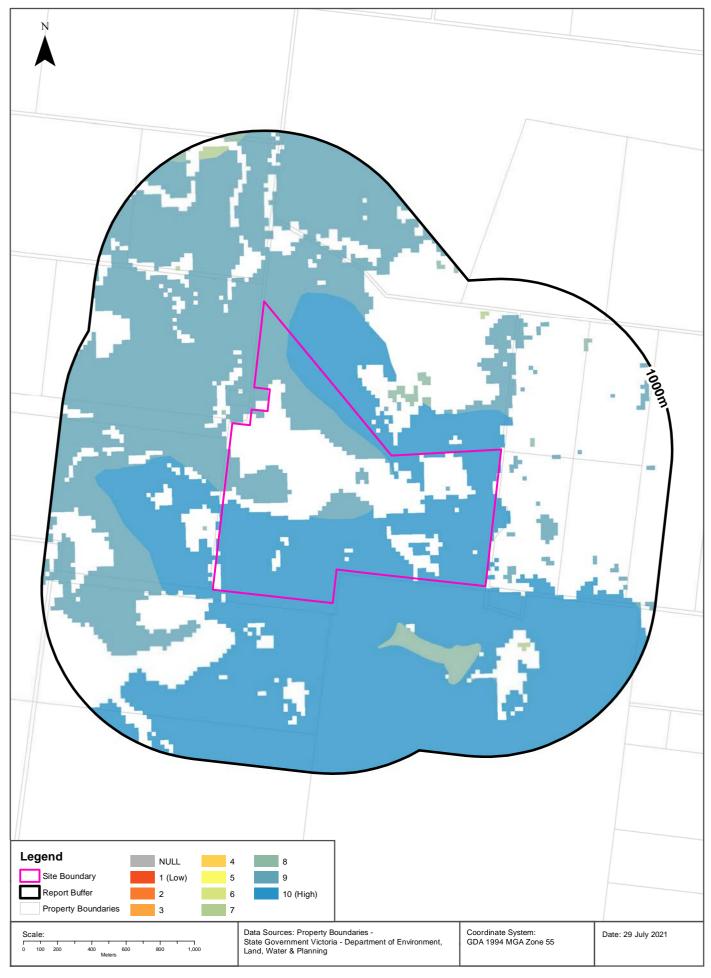




## **Ecological Constraints**

250 Drysdale Road, Little River, VIC 3211

## **Groundwater Dependent Ecosystems Atlas**


What GDEs exist within the dataset buffer?

| GDE Type    | Name | GDE Potential                                      | Geomorphology                                                                                                   | Ecosystem<br>Type | Aquifer Geology            | Distance |
|-------------|------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|----------|
| Terrestrial |      | Moderate potential GDE - from national assessment  | Plains mainly on basalt<br>lavas with many volcanic<br>forms and lakes, partly<br>on weak sedimentary<br>rocks. | Vegetation        | Fractured rock             | Om       |
| Terrestrial |      | Moderate potential GDE - from national assessment  | Plains mainly on basalt<br>lavas with many volcanic<br>forms and lakes, partly<br>on weak sedimentary<br>rocks. | Vegetation        | Unconsolidated sedimentary | Om       |
| Terrestrial |      | Low potential GDE - from national assessment       | Plains mainly on basalt<br>lavas with many volcanic<br>forms and lakes, partly<br>on weak sedimentary<br>rocks. | Vegetation        | Fractured rock             | 153m     |
| Aquatic     |      | Unclassified potential GDE - from regional studies | Plains mainly on basalt<br>lavas with many volcanic<br>forms and lakes, partly<br>on weak sedimentary<br>rocks. | Wetland           |                            | 265m     |
| Terrestrial |      | High potential GDE - from national assessment      | Plains mainly on basalt<br>lavas with many volcanic<br>forms and lakes, partly<br>on weak sedimentary<br>rocks. | Vegetation        | Unconsolidated sedimentary | 929m     |

Groundwater Dependent Ecosystems Atlas Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

# Inflow Dependent Ecosystems Likelihood 250 Drysdale Road, Little River, VIC 3211





## **Ecological Constraints**

250 Drysdale Road, Little River, VIC 3211

## **Inflow Dependent Ecosystems Likelihood**

What IDEs exist within the dataset buffer?

| GDE Type    | Name | IDE<br>Likelih<br>ood | Geomorphology                                                                                       | Ecosystem<br>Type | Aquifer Geology            | Distance |
|-------------|------|-----------------------|-----------------------------------------------------------------------------------------------------|-------------------|----------------------------|----------|
| Terrestrial |      | 8                     | Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks. | Vegetation        | Fractured rock             | 0m       |
| Terrestrial |      | 9                     | Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks. | Vegetation        | Fractured rock             | 0m       |
| Terrestrial |      | 10                    | Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks. | Vegetation        | Fractured rock             | 0m       |
| Terrestrial |      | 10                    | Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks. | Vegetation        | Unconsolidated sedimentary | 0m       |
| Terrestrial |      | 7                     | Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks. | Vegetation        | Fractured rock             | 153m     |
| Terrestrial |      | 6                     | Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks. | Vegetation        | Unconsolidated sedimentary | 201m     |
| Aquatic     |      | 8                     | Plains mainly on basalt lavas with many volcanic forms and lakes, partly on weak sedimentary rocks. | Wetland           |                            | 265m     |

Inflow Dependent Ecosystems Likelihood Data Source: The Bureau of Meteorology Creative Commons 3.0 © Commonwealth of Australia http://creativecommons.org/licenses/by/3.0/au/deed.en

## **Location Confidences**

Where Lotsearch has had to georeference features from supplied addresses, a location confidence has been assigned to the data record. This indicates a confidence to the positional accuracy of the feature. Where applicable, a code is given under the field heading "LC" or "LocConf". These codes lookup to the following location confidences:

| LC Code                        | Location Confidence                                               |
|--------------------------------|-------------------------------------------------------------------|
| Premise match                  | Georeferenced to the site location / premise or part of site      |
| General area or suburb match   | Georeferenced with the confidence of the general/approximate area |
| Road match                     | Georeferenced to the road or rail                                 |
| Road intersection              | Georeferenced to the road intersection                            |
| Feature is a buffered point    | Feature is a buffered point                                       |
| Land adjacent to geocoded site | Land adjacent to Georeferenced Site                               |
| Network of features            | Georeferenced to a network of features                            |

#### **USE OF REPORT - APPLICABLE TERMS**

The following terms apply to any person (End User) who is given the Report by the person who purchased the Report from Lotsearch Pty Ltd (ABN: 89 600 168 018) (Lotsearch) or who otherwise has access to the Report (Terms). The contract terms that apply between Lotsearch and the purchaser of the Report are specified in the order form pursuant to which the Report was ordered and the terms set out below are of no effect as between Lotsearch and the purchaser of the Report.

- 1. End User acknowledges and agrees that:
  - (a) the Report is compiled from or using content (Third Party Content) which is comprised of:
    - (i) content provided to Lotsearch by third party content suppliers with whom Lotsearch has contractual arrangements or content which is freely available or methodologies licensed to Lotsearch by third parties with whom Lotsearch has contractual arrangements (Third Party Content Suppliers); and
    - (ii) content which is derived from content described in paragraph (i);
  - (b) Neither Lotsearch nor Third Party Content Suppliers takes any responsibility for or give any warranty in relation to the accuracy or completeness of any Third Party Content included in the Report including any contaminated land assessment or other assessment included as part of a Report;
  - (c) the Third Party Content Suppliers do not constitute an exhaustive set of all repositories or sources of information available in relation to the property which is the subject of the Report (Property) and accordingly neither Lotsearch nor Third Party Content Suppliers gives any warranty in relation to the accuracy or completeness of the Third Party Content incorporated into the report including any contaminated land assessment or other assessment included as part of a Report;
  - Reports are generated at a point in time (as specified by the date/time stamp appearing on the Report) and accordingly the Report is based on the information available at that point in time and Lotsearch is not obliged to undertake any additional reporting to take into consideration any information that may become available between the point in time specified by the date/time stamp and the date on which the Report was provided by Lotsearch to the purchaser of the Report;
  - Reports must be used or reproduced in their entirety and End User must not reproduce or make available to other persons only parts of the Report;
  - (f) Lotsearch has not undertaken any physical inspection of the property;
  - neither Lotsearch nor Third Party Content Suppliers warrants that all land uses or features whether past or current are identified in the Report;
  - (h) the Report does not include any information relating to the actual state or condition of the Property;
  - the Report should not be used or taken to indicate or exclude actual fitness or unfitness of Land or Property for any particular purpose
  - the Report should not be relied upon for determining saleability or value or making any other decisions in relation to the Property and in particular should not be taken to be a rating or assessment of the desirability or market value of the property or its features; and
  - (k) the End User should undertake its own inspections of the Land or Property to satisfy itself that there are no defects or failures
- 2. The End User may not make the Report or any copies or extracts of the report or any part of it available to any other person. If End User wishes to provide the Report to any other person or make extracts or copies of the Report, it must contact the purchaser of the Report before doing so to ensure the proposed use is consistent with the contract terms between Lotsearch and the purchaser.
- 3. Neither Lotsearch (nor any of its officers, employees or agents) nor any of its Third Party Content Suppliers will have any liability to End User or any person to whom End User provides the Report and End User must not represent that Lotsearch or any of its Third Party Content Suppliers accepts liability to any such person or make any other representation to any such person on behalf of Lotsearch or any Third Party Content Supplier.
- 4. The End User hereby to the maximum extent permitted by law:
  - (a) acknowledges that the Lotsearch (nor any of its officers, employees or agents), nor any of its Third Party Content Supplier have any liability to it under or in connection with the

- Report or these Terms;
- (b) waives any right it may have to claim against Third Party Content Supplier in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms; and
- (c) releases each Third Party Content Supplier from any claim it may have otherwise had in connection with the Report, or the negotiation of, entry into, performance of, or termination of these Terms.
- 5. The End User acknowledges that any Third Party Supplier shall be entitled to plead the benefits conferred on it under clause 4, despite not being a party to these terms.
- 6. End User must not remove any copyright notices, trade marks, digital rights management information, other embedded information, disclaimers or limitations from the Report or authorise any person to do so.
- 7. End User acknowledges and agrees that Lotsearch and Third Party Content Suppliers retain ownership of all copyright, patent, design right (registered or unregistered), trade marks (registered or unregistered), database right or other data right, moral right or know how or any other intellectual property right in any Report or any other item, information or data included in or provided as part of a Report.
- 8. To the extent permitted by law and subject to paragraph 9, all implied terms, representations and warranties whether statutory or otherwise relating to the subject matter of these Terms other than as expressly set out in these Terms are excluded.
- 9. Subject to paragraph 6, Lotsearch excludes liability to End User for loss or damage of any kind, however caused, due to Lotsearch's negligence, breach of contract, breach of any law, in equity, under indemnities or otherwise, arising out of all acts, omissions and events whenever occurring.
- 10. Lotsearch acknowledges that if, under applicable State, Territory or Commonwealth law, End User is a consumer certain rights may be conferred on End User which cannot be excluded, restricted or modified. If so, and if that law applies to Lotsearch, then, Lotsearch's liability is limited to the greater of an amount equal to the cost of resupplying the Report and the maximum extent permitted under applicable laws.
- 11. Subject to paragraph 9, neither Lotsearch nor the End User is liable to the other for:
  - (a) any indirect, incidental, consequential, special or exemplary damages arising out of or in relation to the Report or these Terms; or
  - (b) any loss of profit, loss of revenue, loss of interest, loss of data, loss of goodwill or loss of business opportunities, business interruption arising directly or indirectly out of or in relation to the Report or these Terms,

irrespective of how that liability arises including in contract or tort, liability under indemnity or for any other common law, equitable or statutory cause of action or otherwise.

12. These Terms are subject to New South Wales law.

# Appendix C: Historical Titles



**ABN: 36 092 724 251 Ph: 02 9099 7400** (Ph: 0412 199 304)

Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

#### **Summary of Owners Report**

Address: 250 Drysdale Road, Little River, VIC 3211

Description: - Lot 2 P.S. 344713

#### As regards to the part numbered 1 on attached LASSI Diagram Extract: -

| Date of Acquisition and term held | Registered Proprietor(s) & Occupations where available                                                    | Reference to Title at Acquisition and sale |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 07.04.1881                        | Patrick Curren                                                                                            | Volume 1260 Folio 855                      |
| (1881 to 1916)                    | (Or Patrick Curran)                                                                                       | (First Title)                              |
| 15.08.1916<br>(1916 to 1928)      | Catherine Wilson (Married Woman) Johanna Watson (Married Woman) (Executors of the Will of Patrick Curran) | Volume 1260 Folio 855                      |
| 01.08.1928<br>(1928 to 1937)      | Catherine Wilson (Married Woman)<br>(Surviving Proprietor)                                                | Volume 1260 Folio 855                      |
| 01.08.1928<br>(1928 to 1937)      | Hugo Herman Schlapp, the Younger (Grazier)                                                                | Volume 1260 Folio 855                      |

#### As regards to the part numbered 2 on attached LASSI Diagram Extract: -

| Date of Acquisition and term held | Registered Proprietor(s) & Occupations where available             | Reference to Title at Acquisition and sale |
|-----------------------------------|--------------------------------------------------------------------|--------------------------------------------|
| 29.09.1880<br>(1880 to 1929)      | Angus McIntosh                                                     | Volume 1223 Folio 513<br>(First Title)     |
| 13.08.1929<br>(1929 to 1929)      | James McIntosh (Farmer) (Executor of the Estate of Angus McIntosh) | Volume 1223 Folio 513                      |
| 13.08.1929<br>(1929 to 1937)      | Hugo Herman Schlapp, the Younger (Grazier)                         | Volume 1223 Folio 513                      |

#### As regards to the part numbered 3 on attached LASSI Diagram Extract: -

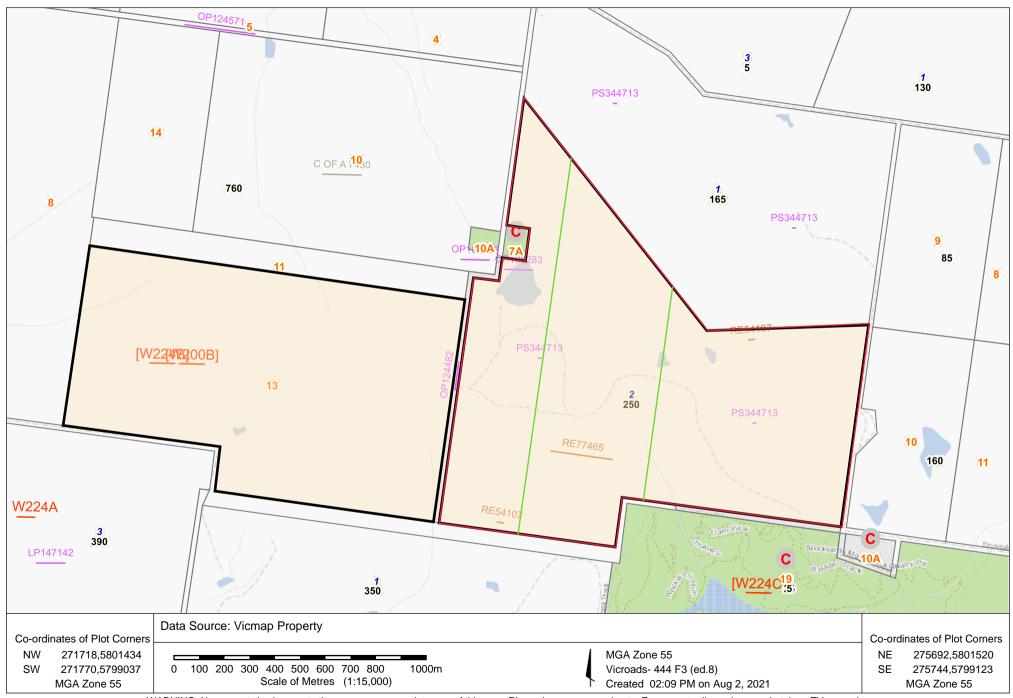
| Date of Acquisition and term held | Registered Proprietor(s) & Occupations where available              | Reference to Title at Acquisition and sale |
|-----------------------------------|---------------------------------------------------------------------|--------------------------------------------|
| 09.09.1880<br>(1880 to 1895)      | Duncan McIntosh                                                     | Volume 1213 Folio 529<br>(First Title)     |
| 10.04.1895<br>(1895 to 1922)      | James McIntosh (Farmer) (Executor of the Estate of Duncan McIntosh) | Volume 1213 Folio 529                      |
| 23.06.1922<br>(1922 to 1929)      | Minnie Gertrude McNaughton (Married Woman)                          | Volume 1213 Folio 529                      |
| 07.02.1929<br>(1929 to 1937)      | Hugo Herman Schlapp, the Younger (Grazier)                          | Volume 1213 Folio 529                      |



**ABN: 36 092 724 251 Ph: 02 9099 7400** (Ph: 0412 199 304)

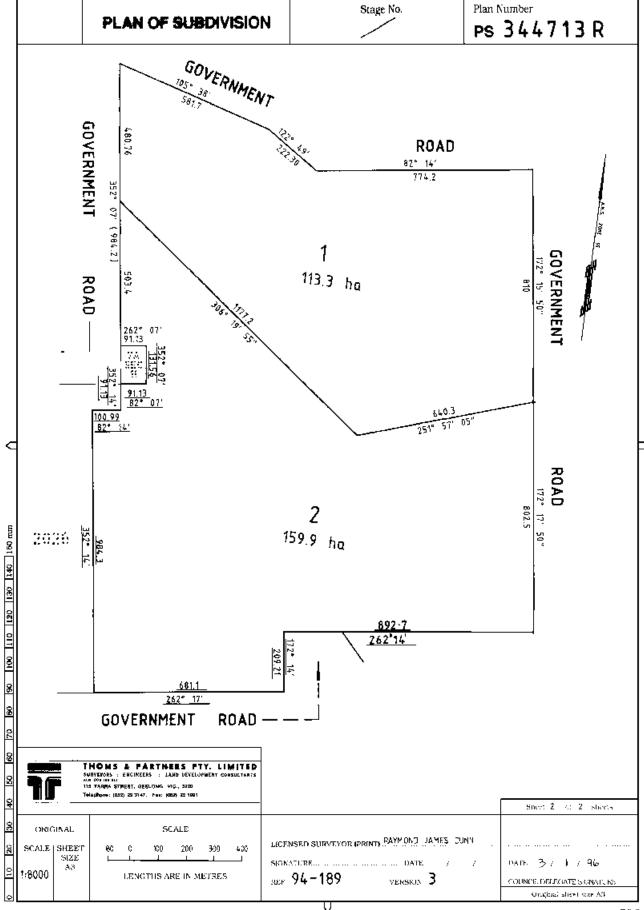
Level 14, 135 King Street, Sydney Sydney 2000 GPO Box 4103 Sydney NSW 2001 DX 967 Sydney

#### Continued as to the whole of the land: -


| Date of Acquisition and term held | Registered Proprietor(s) & Occupations where available                                                                           | Reference to Title at Acquisition and sale                                                                                                                     |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18.05.1937<br>(1937 to 1971)      | James Barnes Kershaw (Grazier)                                                                                                   | Volume 1260 Folio 855  Also Volume 1223 Folio 513  Also Volume 1213 Folio 529                                                                                  |
| 16.04.1971<br>(1971 to 1972)      | Laurence Geoffrey Jennings (Manufacturer) Betty Allison Jennings (Married Woman) (Executors of the Will of James Barnes Kershaw) | Volume 1260 Folio 855  Also Volume 1223 Folio 513  Also Volume 1213 Folio 529                                                                                  |
| 14.12.1972<br>(1972 to 1973)      | Mitchell and English Sand Proprietary Limited                                                                                    | Volume 1260 Folio 855  Also Volume 1223 Folio 513  Also Volume 1213 Folio 529                                                                                  |
| 18.12.1973<br>(1973 to 1980)      | Trans-West Cement Haulage Proprietary Limited                                                                                    | Volume 1260 Folio 855  Also Volume 1223 Folio 513  Also Volume 1213 Folio 529 Now Volume 9007 Folio 644                                                        |
| 13.05.1980<br>(1980 to 2003)      | The Phosphate Co-Operative Company of Australia Limited<br>Now<br>Pivot Limited                                                  | Volume 1260 Folio 855 Now Volume 9391 Folio 123 Also Volume 1223 Folio 513 Now Volume 9391 Folio 122 Also Volume 9007 Folio 644 Now All Volume 10275 Folio 234 |
| 08.04.2003<br>(2003 to 2007)      | Transwest Haulage Pty Ltd                                                                                                        | Volume 10275 Folio 234                                                                                                                                         |
| 12.02.2007<br>(2007 to 2012)      | Kalari Pty Limited                                                                                                               | Volume 10275 Folio 234                                                                                                                                         |
| 03.07.2012<br>(2012 to Date)      | # Barro Group Pty Ltd                                                                                                            | Volume 10275 Folio 234                                                                                                                                         |

#### # Denotes current registered proprietor

Leases: - NIL


Easements: -NIL

Yours Sincerely Taylor Wilson 3<sup>rd</sup> August 2021



Delivered by LANDATARS, Lineation 3 0205/2027 13:50. Page 1 or 3.
© State of Victoria. This publication is copyright. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act 1968 (Cth) and for the purposes of Section 32 of the Sale of Land Act 1962 or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA® System. None of the State of Victoria, LANDATA®, Victorian Land Registry Services Pty. Ltd. ABN 83-206-746-897 accept responsibility for any subsequent release, publication or reproduction of the information.

|                                                                                                 | PLAN OF SU                                                                                                                                           | JBDIVISIO                                                               | ON STAGE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO. LTO use only EDITION 2                                                                                                    |                                                                                                                   | Number<br>344713R                               |
|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Township:<br>Section: A<br>Crown Allo<br>Crown Port<br>LTO Base F<br>Title Refer<br>Last Plan F | Location of La URGI YOUANG  , 11 tment: 12 & 14 , 14 thon: - Record: LITHO (3910) ence: V.9391 F.122, V.9007 F.644 Reference: - ress: 165 GFKINS ROA | Council  1. Tau  2. Tau  Dat  3. Tau  198  OP: 198  Hill The  400 - 10a | Council Certification Name: CITY OF GRE aplantas certification derivative set of original certification or a transfer set of original certification or a transfer set of immedian (S. SEACE) authorized for public open (S. Franch Seat of Sea | ficate and I<br>ATER GEEL<br>tion 6 of the So-<br>tion 11/7) of the<br>other section 2<br>recessived under<br>space under sec | Endorsement  3NG Ref:  beliverum Act 1986  Subdivision Act 1988  14 / 8 / 95  7 section 21 of the Subdivision Act |                                                 |
| AMG Co-cor<br>jof approx. cer<br>in plant                                                       | ntre of land $_{ m N}$ 58004/cstling of Roads and/or                                                                                                 | OQ Zon                                                                  | Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | certified under section 11(7<br>and Delegate<br>and Scal<br>e / /                                                             | ) of the Solichurs                                                                                                | aum Ac: 1998                                    |
| NIL                                                                                             |                                                                                                                                                      | I( <b>L</b>                                                             | Staging                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |                                                                                                                   |                                                 |
| -                                                                                               |                                                                                                                                                      |                                                                         | EXCi<br>UNDi<br>Survey<br>This aw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 AND 2 ARE THE<br>EPT THOSE DIMENS<br>ERLINED. This plan is/in-not<br>vey has been connecte                                  | tons of Lot<br>based on survey<br>d to permans                                                                    | 2 WHICH ARE                                     |
| Logend:                                                                                         | E - Facumbering Essement of A - Appartenant Essement                                                                                                 | r Condition in Cros                                                     | Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                               |                                                                                                                   | LTO use only                                    |
| Basement                                                                                        |                                                                                                                                                      |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                               |                                                                                                                   | Statement of Compliance/<br>Exemption Statement |
| Reference                                                                                       | Primpose                                                                                                                                             | Width<br>(Metres)                                                       | Origin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Land Benefited/In F                                                                                                           | avour Of                                                                                                          | Exemption Statement Received                    |
| NIL.                                                                                            | Priepose<br>NIÈ                                                                                                                                      |                                                                         | Origin<br>NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tand Benefurd/In F<br>N  L                                                                                                    | avaur Of                                                                                                          | Exemption Statement                             |



## MODIFICATION TABLE

RECORD OF ALL ADDITIONS OR CHANGES TO THE PLAN

## PLAN NUMBER PS344713R

WARNING: THE IMAGE OF THIS DOCUMENT OF THE REGISTER HAS BEEN DIGITALLY AMENDED. NO FURTHER AMENDMENTS ARE TO BE MADE TO THE ORIGINAL DOCUMENT OF THE REGISTER.

| AFFECTED<br>LAND/PARCEL | LAND/PARCEL<br>IDENTIFIER<br>CREATED | MODIFICATION           | DEALING<br>NUMBER | DATE    | EDITIÓN<br>NUMBER | ASSISTANT<br>REGISTRAR<br>OF TITLES |
|-------------------------|--------------------------------------|------------------------|-------------------|---------|-------------------|-------------------------------------|
| -                       | -                                    | ROAD ABUTTAL AMENDMENT | AS127107V         | 1/05/19 | 2                 | SN                                  |
|                         |                                      |                        | •                 |         |                   |                                     |
|                         |                                      |                        |                   |         |                   |                                     |
|                         |                                      |                        |                   |         |                   |                                     |
|                         |                                      |                        |                   |         |                   |                                     |
|                         |                                      |                        |                   |         |                   |                                     |
|                         |                                      |                        |                   |         |                   |                                     |
|                         |                                      |                        |                   |         |                   |                                     |
|                         |                                      |                        |                   |         |                   |                                     |
|                         |                                      |                        |                   |         |                   |                                     |
|                         |                                      |                        |                   |         |                   |                                     |
|                         |                                      |                        |                   |         |                   |                                     |
|                         |                                      |                        |                   |         |                   |                                     |
|                         |                                      |                        |                   |         |                   |                                     |
|                         |                                      |                        |                   |         |                   |                                     |
|                         |                                      |                        |                   |         |                   |                                     |
|                         |                                      |                        |                   |         |                   |                                     |

Copyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders, past, present and emerging.

\_\_\_\_\_\_

HISTORICAL SEARCH STATEMENT

Land Use Victoria

Produced 02/08/2021 02:14 PM

Volume 1260 Folio 855

Folio Creation: Details Unknown

STATEMENT END

of Victoria. This publication is copyright and includes confidential information. No part may be reproduced by any process except in accordance with the ns of the Copyright Act or pursuant to a written agreement. The State of Victoria does not warrant the accuracy or completeness of the information in this in any person using or relying upon such information does so on the basis that the State of Victoria shall bear no responsibility or liability whatsoever

Fol. 955

## ORIGINAL



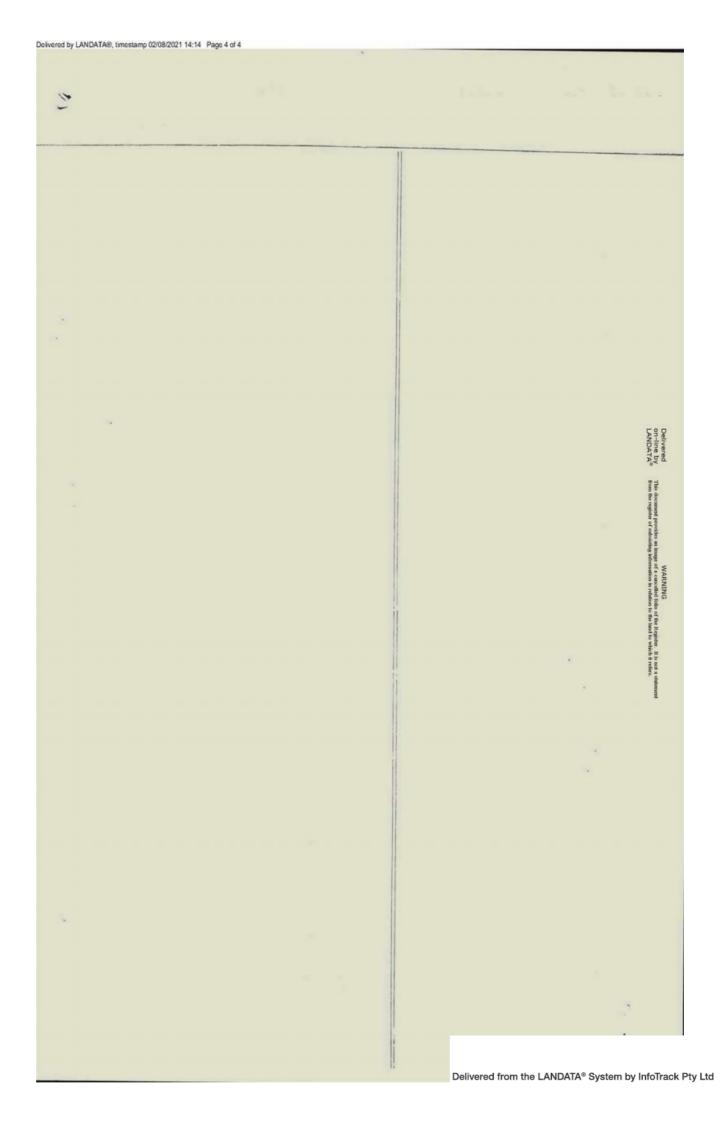
CAVEAT NO. HOLOSOR ODGED 15- 3-0

CAVEAT WITHDRAWN BEFORE ENTRY 25 JUL 1980

CAVEAT NO. 7 84286 LODGED 25-7-40

Cavent transferred to new G/T

13 may 1980




GANCELLED

Delivered on-line by LANDATA

versions of the Register. It is register of sub-sides an image of a cancelled folio of the Register. It is register of sub-siding information in relation to the land to which





Copyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders, past, present and emerging.

HISTORICAL SEARCH STATEMENT

Land Use Victoria

\_\_\_\_\_\_

Produced 02/08/2021 01:52 PM

Volume 9391 Folio 123

Folio Creation: Created as paper folio continued as computer folio Parent title Volume 01260 Folio 855

RECORD OF HISTORICAL DEALINGS

\_\_\_\_\_

Date Lodged for Date Recorded Dealing Imaged Dealing Type and

Registration on Register Details

01/01/1700 20/03/1996 PS344713R Y Cancelled by

PS344713R

RECORD OF VOTS DEALINGS

-----

Date Lodged for Date Recorded Dealing Imaged

Registration on Register

STATEMENT END

 $\bar{\mathbb{G}}$ 

707

© State of Victoria. This publication is copyright and includes confidential information. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act or pursuant to a written agreement. The State of Victoria does not warrant the accuracy or completeness of the information in this publication and any person using or relying upon such information does so on the basis that the State of Victoria shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information.

H979604 2nd Cert.

NOT TO BE TAKEN FROM THE OFFICE OF TITLES



CANGELOLED VOL. 9391 FOL 123

Certificate of Citle

UNDER THE "TRANSFER OF LAND ACT

DATED the 13th day of May 1980

ROAD

Registrar of Titles



WARNING

provides an image of a cancelled folio of the Register. It is refuse to the same of subsisting information in relation to the land to which it

ENCUMBRANCES REFERRED TO

MEASUREMENTS ARE IN METRES

AREA IS IN HECTARES (ho)



T09391-123-1-4

Derived from Vol.1260 Fol.855 H979604 (AVEAT No. sources LODGED 25-6-80

CAVEAT WITHDRAW (AR.B.) R.G.

NO. PS 344713 R

Delivered on-line by LANDATA®

e register of subsisting information in relation to the land to which it refers.

Copyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

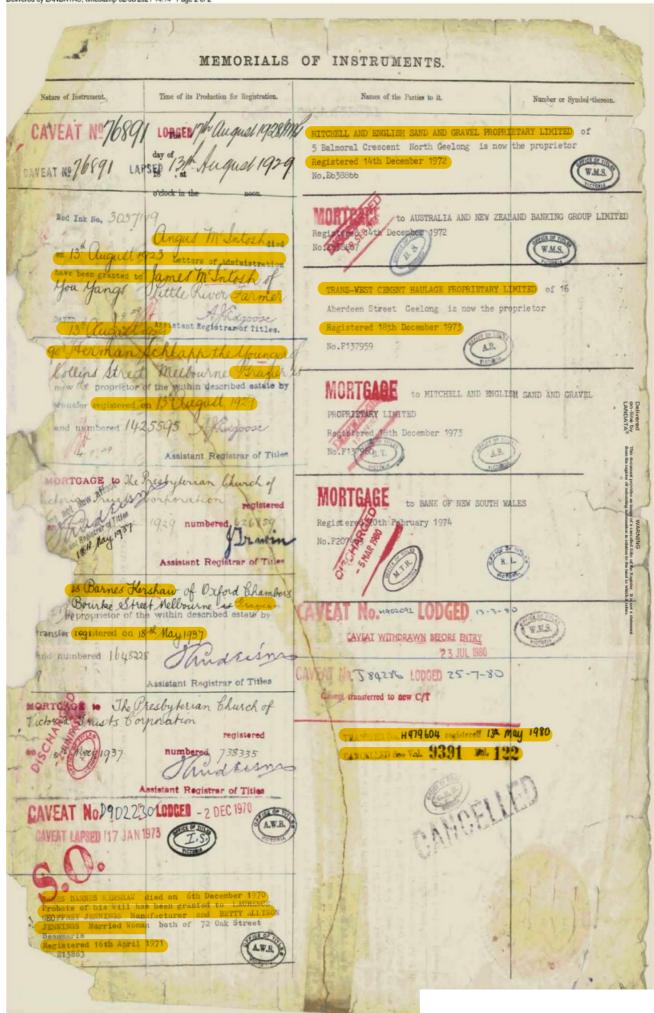
The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders, past, present and emerging.

\_\_\_\_\_\_

HISTORICAL SEARCH STATEMENT

Land Use Victoria

Produced 02/08/2021 02:14 PM


Volume 1223 Folio 513

Folio Creation: Created as paper folio continued as computer folio

STATEMENT END

ia. This publication is copyright and includes confidential information. No part may be reproduced by any process except in accordance with the Copyright Act or pursuant to a written agreement. The State of Victoria does not warrant the accuracy or completeness of the information in this any person using or relying upon such information does so on the basis that the State of Victoria shall bear no responsibility or liability whatsoever s, defects or omissions in the information.

for



Copyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders, past, present and emerging.

HISTORICAL SEARCH STATEMENT

Land Use Victoria

\_\_\_\_\_\_

Produced 02/08/2021 01:53 PM

Volume 9391 Folio 122

Folio Creation: Created as paper folio continued as computer folio Parent title Volume 01223 Folio 513

RECORD OF HISTORICAL DEALINGS

\_\_\_\_\_

Date Lodged for Date Recorded Dealing Imaged Dealing Type and

Registration on Register Details

01/01/1700 20/03/1996 PS344713R Y Cancelled by

PS344713R

RECORD OF VOTS DEALINGS

-----

Date Lodged for Date Recorded Dealing Imaged

Registration on Register

STATEMENT END

© State of Victoria. This publication is copyright and includes confidential information. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act or pursuant to a written agreement. The State of Victoria does not warrant the accuracy or completeness of the information in this publication and any person using or relying upon such information does so on the basis that the State of Victoria shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information.

H979604 lst cert.

#### ORIGINAL

NOT TO BE TAKEN FROM THE OFFICE OF TITLES



UNDER THE "TRANSFER OF LAND ACT

THE PHOSPHATE CO-OPERATIVE COMPANY OF AUSTRALIA LIMITED of 550 Bourke Street-Melbourne is the proprietor of an estate in fee simple subject to the- - encumbrances notified hereunder in all that piece of land in the- - -Parish of Wurdi Youang County of Grant being Crown Allotment 14 Section A- -which land is shown enclosed by continuous lines on the map hereon-

707

5

DATED the 13th day of May 1980




WARNING

WARNING

WARNING

To subsisting information in relation to the Register. It is not a statem of subsisting information in relation to the land to which it refers.

ENCUMBRANCES REFERRED TO







T09391-122-1-8

Derived from Vol.1223 Fol.513 н979604

(AVEAT No. 584286 LODGED

NO. PS 344713R



Copyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders, past, present and emerging.

\_\_\_\_\_\_

HISTORICAL SEARCH STATEMENT

Land Use Victoria

Produced 02/08/2021 02:14 PM

Volume 1213 Folio 529

Folio Creation: Details Unknown

STATEMENT END

This publication is copyright and includes confidential information. No part may be reproduced by any process except in accordance with the opyright Act or pursuant to a written agreement. The State of Victoria does not warrant the accuracy or completeness of the information in this person using or relying upon such information does so on the basis that the State of Victoria shall bear no responsibility or liability whatsoever for

now the proprietor of the within described estate by transfer registered on the lecture 1929 and numbered 14909 (B. Marphy Assistant Registrar of Titles

Mongarage Agent & Presbyterian Church of hickoria Dinals Corporation registered

not all fulgast 1929 numbered 1826859.

Assistant Registrar of Titles

GRAVEL PROPRIETARY LIMITED of
5 Balmoral Crescent North
Geelong is now the proprietor
Registered 14th December 1522
No.E638866

MITCHELL AND ENGLISH SAND AND

to AUSTRALIA AND NEW NEW ZEALARD BANKING GROUP LIMITED Registered 14th Dec 165

Copyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders, past, present and emerging.

HISTORICAL SEARCH STATEMENT

Land Use Victoria

\_\_\_\_\_\_

Produced 02/08/2021 01:53 PM

Volume 9007 Folio 644

Folio Creation: Created as paper folio continued as computer folio Parent title Volume 01213 Folio 529

RECORD OF HISTORICAL DEALINGS

-----

Date Lodged for Date Recorded Dealing Imaged Dealing Type and

Registration on Register Details

01/01/1700 20/03/1996 PS344713R Y Cancelled by

PS344713R

RECORD OF VOTS DEALINGS

-----

Date Lodged for Date Recorded Dealing Imaged

Registration on Register

STATEMENT END

© State of Victoria. This publication is copyright and includes confidential information. No part may be reproduced by any process except in accordance with the provisions of the Copyright Act or pursuant to a written agreement. The State of Victoria does not warrant the accuracy or completeness of the information in this publication and any person using or relying upon such information does so on the basis that the State of Victoria shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information.

#### ORIGINAL

NOT TO BE TAKEN FROM THE OFFICE OF TITLES





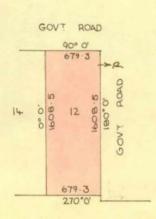
UNDER THE "TRANSFER OF LAND ACT

TRANS-WEST CEMENT HAULAGE PROPRIETARY LIMITED of 16 Aberdeen Street -

Geelong is now the proprietor of an estate in fee simple subject to the encumbrances notified hereunder in ALL THAT piece of land - - - delineated and coloured red on the map hereon being Crown Allotment 12 Section A Parish of Wurdi Youang County of Grant - - - -

Delivered on-line by LANDATA®

DATED the 18th day of December 1973


Assistant Registrar of Titles

ENCUMBRANCES REFERRED

This document provides an image of a cancelled Joho from the register of subsisting information to relation of the Register. It is not a statement of the hand to which it refers.

AND

FOL



MEASUREMENTS ARE IN METRES

Der



to MITCHELL AND ENGLISH

SAND AND GRAVE PROPRIETARY LIMITED

Registered Sth December 19





## MORTGAGE

to BANK OF NEW SOUTH

WALES
Registered 20th F

20th February 1974



#### CAVEAT NO. 4902092 LODGED 17-3-9

CAVEAT WITHDRAWN BEFORE ENTRY

23 JUL 1980



CAVEAT MO. 784286

199659 52-1-80

CAVEAT WITHDRAWN 8 July 1844





THE PHOSPHATE CO-OPERATIVE COMPANY

OF AUSTRALIA LIMITED of 550 Bourke

Street Melbourne is now the proprietor

Registered 13th May 1980

No. H979604



# CANGELLED

NO. PS 344713R





T09007-644-1-9

V.9007 F. 644

Historical Search

Copyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders, past, present and emerging.

HISTORICAL SEARCH STATEMENT

Land Use Victoria

\_\_\_\_\_\_

Produced 02/08/2021 01:52 PM

Volume 10275 Folio 234

Folio Creation: Created as a computer folio

Parent titles :

Volume 09007 Folio 644

Volume 09391 Folio 122 to Volume 09391 Folio 123

RECORD OF HISTORICAL DEALINGS

\_\_\_\_\_

Date Lodged for Date Recorded Dealing Imaged Dealing Type and

Registration on Register Details

31/10/2001 07/12/2001 X850847X Y MORTGAGE

SANDHURST TRUSTEES

LIMITED

RECORD OF VOTS DEALINGS

\_\_\_\_\_\_

Date Lodged for Date Recorded Dealing Imaged

Registration on Register

DISCHARGE OF MORTGAGE

MORTGAGE(S) REMOVED

X850847X

08/04/2003 (AB993951V) Y

TRANSFER OF LAND BY ENDORSEMENT

FROM:

PIVOT LIMITED

TO:

TRANSWEST HAULAGE PTY LTD

RESULTING PROPRIETORSHIP:

Estate Fee Simple Sole Proprietor

TRANSWEST HAULAGE PTY LTD of 202 STATION ST

12/02/2007 23/03/2007 AE891489H TRANSFER OF LAND BY ENDORSEMENT FROM: TRANSWEST HAULAGE PTY LTD KALARI PTY LIMITED RESULTING PROPRIETORSHIP: Estate Fee Simple Sole Proprietor KALARI PTY LIMITED of 183 FITZGERALD ROAD LAVERTON NORTH VIC 3026 AE891489H 12/02/2007 03/07/2012 AJ772096A (O) 03/07/2012 Y TRANSFER OF LAND BY ENDORSEMENT FROM: KALARI PTY LTD BARRO GROUP PTY LTD 005105724 RESULTING PROPRIETORSHIP: Estate Fee Simple Sole Proprietor BARRO GROUP PTY LTD of 191 DRUMMOND STREET CARLTON VICTORIA 3053 AJ772096A 03/07/2012

STATEMENT END

HISTORICAL REPRINT(S)

Volume 10275 Folio 234

70732484622Q Page 1 Produced 20/03/1996 01:18 pm

LAND

----

LOT 2 on Plan of Subdivision 344713R.

PARENT TITLE(s):

Volume 09007 Folio 644 Volume 09391 Folio 122 Volume 09391 Folio 123 Created by instrument PS344713R 20/03/1996

REGISTERED PROPRIETOR

-----

ESTATE FEE SIMPLE

SOLE PROPRIETOR

PIVOT LIMITED; 160 QUEEN STREET MELBOURNE 3000

#### Registered PS344713R 20/03/1996

#### ENCUMBRANCES, CAVEATS AND NOTICES

-----

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988.

Any other encumbrances shown or entered on the plan.

SEE PS344713R FOR FURTHER DETAILS AND BOUNDARIES

END OF CERTIFICATE

Volume 10275 Folio 234

123410607677H Page 1 Produced 07/12/2001 09:39 am

LAND

----

LOT 2 on Plan of Subdivision 344713R.

PARENT TITLE(s):

Volume 09007 Folio 644 Volume 09391 Folio 122 Volume 09391 Folio 123 Created by instrument PS344713R 20/03/1996

REGISTERED PROPRIETOR

\_\_\_\_\_

ESTATE FEE SIMPLE

SOLE PROPRIETOR

PIVOT LIMITED; 160 QUEEN STREET MELBOURNE 3000 PS344713R 20/03/1996

ENCUMBRANCES, CAVEATS AND NOTICES

\_\_\_\_\_

MORTGAGES AND CHARGES IN PRIORITY RANKING

1 X850847X 31/10/2001 MORTGAGE

SANDHURST TRUSTEES LTD

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

DIAGRAM LOCATION

-----

SEE PS344713R FOR FURTHER DETAILS AND BOUNDARIES

END OF CERTIFICATE

Volume 10275 Folio 234 124005431856M Produced 08/04/2003 10:30 am

#### LAND DESCRIPTION

-----

Lot 2 on Plan of Subdivision 344713R. PARENT TITLES:

Volume 09007 Folio 644

Volume 09391 Folio 122 to Volume 09391 Folio 123

Created by instrument PS344713R 20/03/1996

#### REGISTERED PROPRIETOR

\_\_\_\_\_

Estate Fee Simple Sole Proprietor

PIVOT LIMITED of 160 QUEEN STREET MELBOURNE 3000

PS344713R 20/03/1996

#### ENCUMBRANCES, CAVEATS AND NOTICES

-----

MORTGAGE X850847X 31/10/2001

SANDHURST TRUSTEES LTD

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

#### DIAGRAM LOCATION

-----

SEE PS344713R FOR FURTHER DETAILS AND BOUNDARIES

Delivered from the LANDATA® System by InfoTrack Pty Ltd.

Copyright State of Victoria. No part of this publication may be reproduced except as permitted by the Copyright Act 1968 (Cth), to comply with a statutory requirement or pursuant to a written agreement. The information is only valid at the time and in the form obtained from the LANDATA REGD TM System. None of the State of Victoria, its agents or contractors, accepts responsibility for any subsequent publication or reproduction of the information.

The Victorian Government acknowledges the Traditional Owners of Victoria and pays respects to their ongoing connection to their Country, History and Culture. The Victorian Government extends this respect to their Elders, past, present and emerging.

REGISTER SEARCH STATEMENT (Title Search) Transfer of Land Act 1958

\_\_\_\_\_\_

VOLUME 10275 FOLIO 234

Security no : 124091561962G Produced 02/08/2021 01:49 PM

#### LAND DESCRIPTION

\_\_\_\_\_

Lot 2 on Plan of Subdivision 344713R.

PARENT TITLES :

Volume 09007 Folio 644

Volume 09391 Folio 122 to Volume 09391 Folio 123

Created by instrument PS344713R 20/03/1996

#### REGISTERED PROPRIETOR

\_\_\_\_\_

Estate Fee Simple

Sole Proprietor

BARRO GROUP PTY LTD of 191 DRUMMOND STREET CARLTON VICTORIA 3053 AJ772096A 03/07/2012

#### ENCUMBRANCES, CAVEATS AND NOTICES

-----

Any encumbrances created by Section 98 Transfer of Land Act 1958 or Section 24 Subdivision Act 1988 and any other encumbrances shown or entered on the plan set out under DIAGRAM LOCATION below.

#### DIAGRAM LOCATION

\_\_\_\_\_

SEE PS344713R FOR FURTHER DETAILS AND BOUNDARIES

ACTIVITY IN THE LAST 125 DAYS

\_\_\_\_\_

NIL

-----END OF REGISTER SEARCH STATEMENT-----

Additional information: (not part of the Register Search Statement)

Street Address: 250 DRYSDALE ROAD LITTLE RIVER VIC 3211

DOCUMENT END

Delivered from the LANDATA® System by InfoTrack Pty Ltd.

# Appendix D: Dial Before you Dig Plans





# Dial Before You Dig (DBYD) Electrical Asset Location Information

CitiPower/Powercor Locked Bag 14090, Melbourne VIC 8001 General Enquiries Telephone: 132 206

To: ('Enquirer')

Lucinda Trickey

Level 6,15 William Street

Melbourne VIC 3000

| Enquiry Details  |                                   |  |  |
|------------------|-----------------------------------|--|--|
| Utility ID       | 50022                             |  |  |
| Sequence Number  | 201094608                         |  |  |
| Enquiry Date     | 27/07/2021 11:13                  |  |  |
| Response         | ALL CLEAR                         |  |  |
| Address          | 250 Drysdale Road<br>Little River |  |  |
| Location in Road |                                   |  |  |
| Activity         | Vertical Boring                   |  |  |

| Enquirer Details |                                 |        |  |
|------------------|---------------------------------|--------|--|
| Customer ID      | 3027123                         |        |  |
| Contact          | Lucinda Trickey                 |        |  |
| Company          |                                 |        |  |
| Email            | lucinda.trickey@senversa.com.au |        |  |
| Phone            | +61424172065                    | Mobile |  |

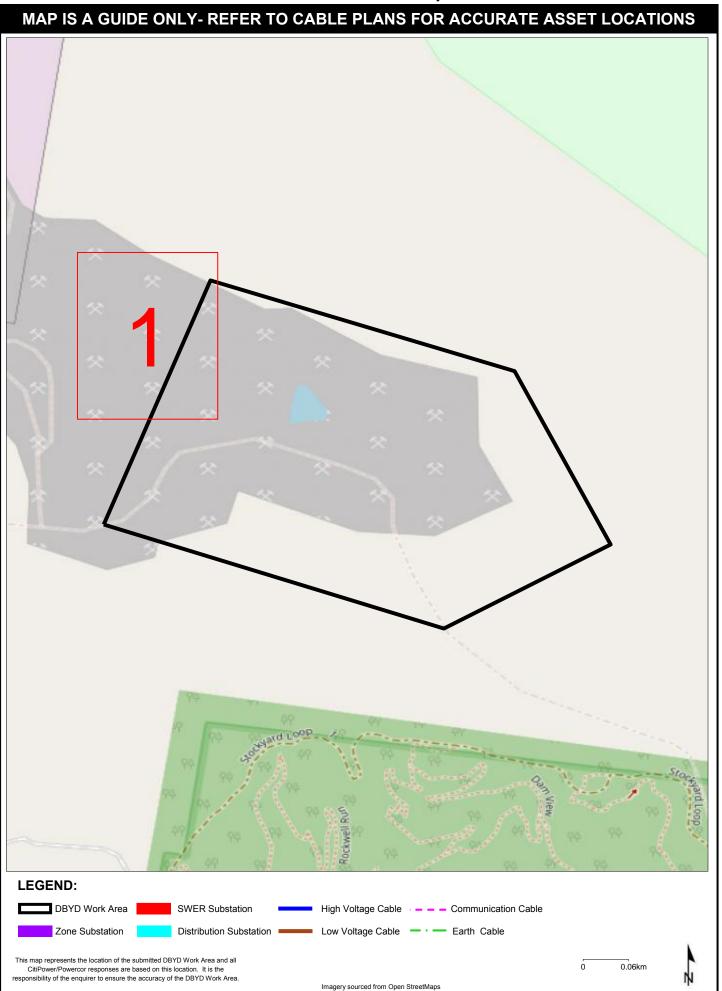
#### **Enquirer Responsibilities**

This notification is valid for 28 days from the issue date. CitiPower/Powercor assets are critical infrastructure and great care must be taken to avoid asset damage and risk to public safety. The information supplied in the DBYD Response is intended to be indicative only. External parties should make their own enquiries to ensure the accuracy of the information, including but not limited to:

- Check that the location of the dig site indicated is correct, if not you must submit a new enquiry.
- Should your scope of works change or the plan validity dates expire, you must submit a new enquiry.
- If you do not understand the plans provided please contact CitiPower/Powercor prior to works commencing.
- Always perform an onsite inspection to establish the presence of assets.
- Ensure you adhere to any State legislative requirements regarding Duty of Care and safe digging requirements.

Report any asset damage immediately on 132 206. Note: CitiPower/Powercor reserves the right to recover compensation for damages.



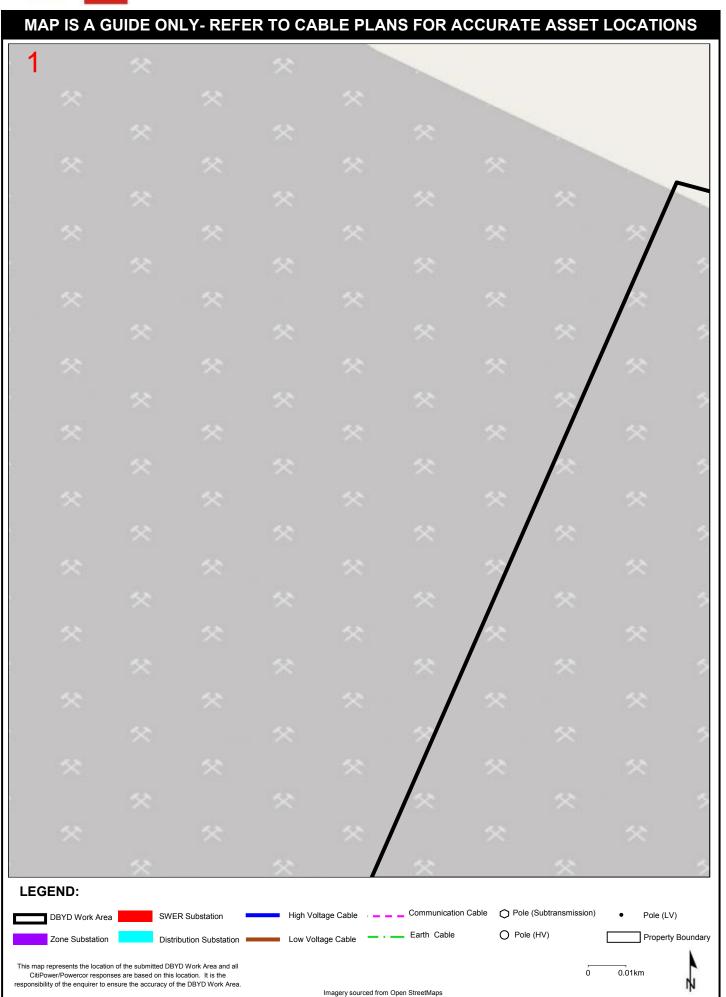





### **Locality Map**

#### **Sequence No:** 201094608

250 Drysdale Road Little River








Map 1

**Sequence No:** 201094608



# UNDERGROUND ELECTRICITY HAZARD AWARENESS INSTRUCTIONS





#### For CitiPower & Powercor Dial Before You Dig customers

Always complete a Dial Before You Dig request before you proceed with any work plans



If there are Underground Electricity assets identified within your work area please ensure that you carefully evaluate all of the information provided

If any part of your proposed works impacts on the **EXCLUSION ZONES** shown on the next page then before proceeding you must contact CitiPower/Powercor to determine if a **PERMIT TO WORK** is required and to organise a **SITE VISIT** 

Site Visit/Permit To Work applications may be lodged at:

https://www.citipower.com.au/working-with-us/suppliers/online-permit-applications/site-visit/

If you need assistance to determine if you need a Site Visit please call:



CitiPower on 1300 301 101



Powercor on 132 206

#### Underground Electricity Asset Location Details Accuracy:

The Underground Electricity asset location details provided with this response are based on the best information available at the time

All reasonable care has been taken to ensure the accuracy of the information provided but complete accuracy cannot be guaranteed

Please be aware that the Underground Electricity Asset depths shown on the attached plans are accurate at the time of recording, however, due to works undertaken over the years by parties other than CitiPower/Powercor the Underground Electricity Asset depths may differ to those shown on the plans

# Contact with Underground Electricity Cables can cause serious injury or death

If you observe any Underground Electricity Assets that do not appear on the records provided

Stop Work Immediately

and contact CitiPower/Powercor on the above numbers

This DBYD response has been Automatically Generated

# JNDERGROUND ELECTRICITY HAZARD **AWARENESS INSTRUCTIONS**

For CitiPower & Powercor Dial Before You Dig customers

# **EXCLUSION ZONES**





Heavy Machinery & Mechanical Excavation 500mm Exclusion Zone

a 500mm distance of Underground Electricity Assets requires a Permit to Work Heavy (Crawler Type) Machinery operation and Mechanical Excavation within

300mm Exclusion Zone Hand Tools Only

All Excavation within a 300mm distance of Underground Electricity Assets requires a Permit to Work and must only be performed with Hand Tools

Underground Assets Pile Driving or the **ALWAYS** requires Use of Explosives within the vicinity a Permit to Work. of CP/PAL 2000mm Works within this area that require a Site Technical Assessment and may require a Permit to Work includes: 500mm 300mm UG Electrical Assets 300mm 300mm 300mm 500mm mm003 മ്പുറ 2000mm Exclusion Zone **2000mm** 2000mm **Ground Level** 100mm to 300mm Electrical Assets typically located Marker Tape/ Cover Slab above UG

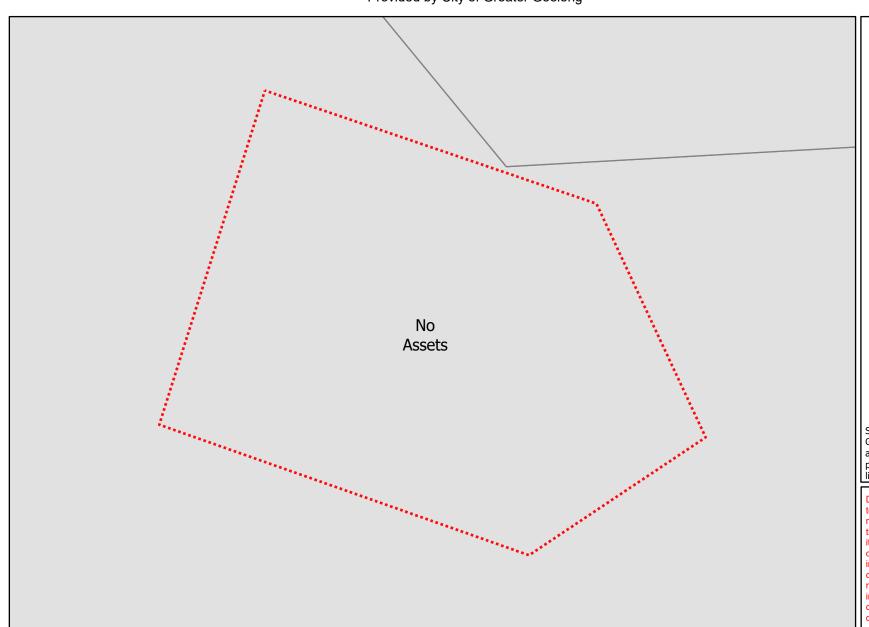
For Underground Electricity Asset location purposes:

Excavations Parallel to Underground Electricity Assets, Excavations Across Underground Electricity Assets

Pot Hole Boring Machine (Vertical Boring), Directional Boring Machine,

Excavation must cease once either Marker Tape, Cover Slab or top of asset is located. All excavation must be performed BY HAND using only non-powered tools No disturbance of the Marker Tape, the Protective Cover or the Asset is allowed. Any disturbance must be reported immediately to CitiPower/Powercor Careful Excavation by hand may be performed under a Permit to Work above energised Underground Electricity Assets within the Exclusion Zone

Excavation Below Underground Electricity Assets:


All excavation BELOW Underground Electricity Assets outside of the Exclusion Zone must ensure that there is no disturbance to the asset and that the area is restored to full pre-excavation integrity upon reinstatement



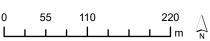
#### Job # 30189745 Seq # 201094610

#### Provided by City of Greater Geelong





Legend


DBYD Enquiry

Spatial data shown is copyright to the City of Greater Geelong and is not warranted for accuracy or completeness of the data provided, and accepts no responsibility or liability for any errors, faults or omissions.

Disclaimer: The plan is provided in response to a Dial Before You Dig request. While all reasonable care has been taken to ensure the accuracy of the information on this plan, its purpose is to provide a general indication of the location of City of Greater Geelong's infrastructure. The information provided may contain errors or omissions and the accuracy may not suit all users. A site inspection and investigation are recommended before commencement of any project based on this data.

In an emergency contact City of Greater Geelong on 03 5272 5272

Index Sheet
Plans generated by SmarterWX™ Automate







#### DBYD Response from AusNet Gas Services Pty Ltd.

**Job Number:** 30189745

Sequence Number: 201094611

**Enquiry Date:** 27/07/2021

**Enquiry Location:** 250 Drysdale Road Little River, VIC



Thank you for using the Dial Before You Dig (DBYD) service before engaging in work at the above location.

#### AusNet Gas Services Pty Ltd - No Gas Assets Present

There are no SP AusNet gas underground assets present within the vicinity of your enquiry.

\* Please note this information is only valid for 28 Days from date of issue.

Do not rely solely on these Dial Before You Dig plans for underground asset location. The exact location of existing underground assets should be established on site prior to commencement of work.

#### For Your Safety

In case of emergency, gas escapes, hit or damaged gas pipelines call 136707.

Where proposed work is in close proximity to a gas pipe, the exact location of the pipe must first be determined by careful hand excavation.

#### **Gas Service Lines on Private Property**

Supplied plans do not show gas service lines on private property and do not show any gas assets of authorities other than AusNet Gas Services Pty Ltd, which may exist on site.

If you require assistance to locate gas services please contact **Downer Group** at the following locations.

| Melb Metro | (03) 7379 8800 | Ballarat | (03) 5342 6400 | Warrnambool | (03) 5561 9614 |
|------------|----------------|----------|----------------|-------------|----------------|
| Geelong    | (03) 5223 9400 | Bendigo  | (03) 5442 4855 |             |                |

#### **AusNet Services – DBYD Support**

# Appendix E: Dangerous Goods Search

#### **Lucinda Trickey**

**From:** DG Notifications (WorkSafe) < DG\_Notifications@worksafe.vic.gov.au>

Sent: Wednesday, 4 August 2021 12:12 PM

**To:** Lucinda Trickey

**Subject:** RE: 19067 - Dangerous Goods Search

#### Good Afternoon Lucinda

A search of our database has been completed for the records at 250 Drysdale Road, Little River.

I can confirm that WorkSafe Victoria has not found any records of a notification of dangerous goods stored or handled at that premises.

Kind regards

Marina Matijevic

Operations & Emergency

Management

marina matijevic@worksafe.vic.gov.au 1 Malop Street
Tel/ 4243 7555 GEELONG VIC 3220
Mb/ 0408 531 513 www.worksafe.vic.gov.au



#### BE GREEN, READ FROM THE SCREEN

From: Lucinda Trickey < Lucinda. Trickey@senversa.com.au>

Sent: Tuesday, 3 August 2021 10:02 AM

To: DG Notifications (WorkSafe) < DG Notifications@worksafe.vic.gov.au>; Dangerous Goods Unit (WorkSafe)

<dangerousgoodsunit@worksafe.vic.gov.au>
Subject: 19067 - Dangerous Goods Search

Hi,

Could you please disclose any available information of current or historical chemical/fuel storage and dangerous goods registered for the property identified as:

250 Drysdale Road, Little River (Lot 2 PS344713)

This query is for the purpose of completing a Baseline Environmental Site Assessment into potential contamination at the property.

Permission from the site owner is provided in the attached email.

If you hold no records for the property could you please respond in writing indicating that to be the case.

Kind Regards,



#### **Lucinda Trickey**

Associate Environmental Engineer

M: +61 424 172 065

E: Lucinda.Trickey@senversa.com.au

Lucinda Trickey is on Teams

www.senversa.com.au

Level 6, 15 William St Melbourne, VIC, 3000, Australia +61 3 9606 0070 in 4

This email and any attachments may contain information that is confidential and/or privileged. If you receive this email by mistake, please notify the sender and delete all copies. Confidentiality and/or privilege is not waived in relation to emails sent or received in error. Serversa accepts no responsibility for emails sent by employees that are of a personal nature or in breach of any law or regulation. We attempt to minimise cybersecurity risks, however cannot guarantee that emails or attachments are secure. Any personal information in this email must be handled in accordance with the Privacy Act 1988 (Cth) or equivalent.





#### **IMPORTANT-**

- (1) The contents of this email and its attachments may be confidential and privileged. Any unauthorised use of the contents is expressly prohibited. If you receive this email in error, please contact us, and then delete the email.
- (2) Before opening or using attachments, check them for viruses and defects. The contents of this email and its attachments may become scrambled, truncated or altered in transmission. Please notify us of any anomalies.
- (3) Our liability is limited to resupplying the email and attached files or the cost of having them resupplied.
- (4) We collect personal information to enable us to perform our functions. For more information about the use, access and disclosure of this information, refer to our privacy policy at our website.
- (5) Please consider the environment before printing.

Message protected by MailGuard: e-mail anti-virus, anti-spam and content filtering. <a href="http://www.mailguard.com.au/mg">http://www.mailguard.com.au/mg</a>

Report this message as spam

Appendix F: Cathodic Protection Search



Primary Search criteria: Suburb contains "Little River" Secondary Search criteria: Address contains "Drysdale"

No record found

#### Disclaimer

Energy Safe Victoria provides Cathodic Protection system information in good faith, but cannot guarantee the completeness or accuracy of or validate the information provided. The Cathodic Protection (CP) database is a register of currently operating Cathodic Protection systems in Victoria and was established in 1970. The CP database is administered under the Electricity Safety Act 1998 and the Electricity Safety (Cathodic Protection) Regulations 2019. Some underground fuel tanks may not be listed in the CP database including: if the tank is not metallic (therefore not requiring CP); the tank is metallic but CP was not installed; the CP system was not registered, the CP was installed after 26 November 2019 after which galvanic anodes under 250mA were no longer required to be registered; or the CP system has been de-commissioned. If you believe underground tanks may be present and not shown on ESV's CP database you should conduct your own tests and investigations. ESV accepts no responsibility or liability for or arising from your use of, or reliance on, information obtained from the CPS database.



Primary Search criteria: Suburb contains "Little River"
Secondary Search criteria: Address contains "Stockyards"

No record found

#### Disclaimer

Energy Safe Victoria provides Cathodic Protection system information in good faith, but cannot guarantee the completeness or accuracy of or validate the information provided. The Cathodic Protection (CP) database is a register of currently operating Cathodic Protection systems in Victoria and was established in 1970. The CP database is administered under the Electricity Safety Act 1998 and the Electricity Safety (Cathodic Protection) Regulations 2019. Some underground fuel tanks may not be listed in the CP database including: if the tank is not metallic (therefore not requiring CP); the tank is metallic but CP was not installed; the CP system was not registered, the CP was installed after 26 November 2019 after which galvanic anodes under 250mA were no longer required to be registered; or the CP system has been de-commissioned. If you believe underground tanks may be present and not shown on ESV's CP database you should conduct your own tests and investigations. ESV accepts no responsibility or liability for or arising from your use of, or reliance on, information obtained from the CPS database.



Primary Search criteria: Suburb contains "Little River" Secondary Search criteria: Address contains "Cressy Gully"

No record found

#### Disclaimer

Energy Safe Victoria provides Cathodic Protection system information in good faith, but cannot guarantee the completeness or accuracy of or validate the information provided. The Cathodic Protection (CP) database is a register of currently operating Cathodic Protection systems in Victoria and was established in 1970. The CP database is administered under the Electricity Safety Act 1998 and the Electricity Safety (Cathodic Protection) Regulations 2019. Some underground fuel tanks may not be listed in the CP database including: if the tank is not metallic (therefore not requiring CP); the tank is metallic but CP was not installed; the CP system was not registered, the CP was installed after 26 November 2019 after which galvanic anodes under 250mA were no longer required to be registered; or the CP system has been de-commissioned. If you believe underground tanks may be present and not shown on ESV's CP database you should conduct your own tests and investigations. ESV accepts no responsibility or liability for or arising from your use of, or reliance on, information obtained from the CPS database.



Primary Search criteria: Suburb contains "Little River"
Secondary Search criteria: Address contains "Sandy Creek"

No record found

#### Disclaimer

Energy Safe Victoria provides Cathodic Protection system information in good faith, but cannot guarantee the completeness or accuracy of or validate the information provided. The Cathodic Protection (CP) database is a register of currently operating Cathodic Protection systems in Victoria and was established in 1970. The CP database is administered under the Electricity Safety Act 1998 and the Electricity Safety (Cathodic Protection) Regulations 2019. Some underground fuel tanks may not be listed in the CP database including: if the tank is not metallic (therefore not requiring CP); the tank is metallic but CP was not installed; the CP system was not registered, the CP was installed after 26 November 2019 after which galvanic anodes under 250mA were no longer required to be registered; or the CP system has been de-commissioned. If you believe underground tanks may be present and not shown on ESV's CP database you should conduct your own tests and investigations. ESV accepts no responsibility or liability for or arising from your use of, or reliance on, information obtained from the CPS database.



Primary Search criteria: Suburb contains "Little River" Secondary Search criteria: Address contains "Gifkins"

No record found

#### Disclaimer

Energy Safe Victoria provides Cathodic Protection system information in good faith, but cannot guarantee the completeness or accuracy of or validate the information provided. The Cathodic Protection (CP) database is a register of currently operating Cathodic Protection systems in Victoria and was established in 1970. The CP database is administered under the Electricity Safety Act 1998 and the Electricity Safety (Cathodic Protection) Regulations 2019. Some underground fuel tanks may not be listed in the CP database including: if the tank is not metallic (therefore not requiring CP); the tank is metallic but CP was not installed; the CP system was not registered, the CP was installed after 26 November 2019 after which galvanic anodes under 250mA were no longer required to be registered; or the CP system has been de-commissioned. If you believe underground tanks may be present and not shown on ESV's CP database you should conduct your own tests and investigations. ESV accepts no responsibility or liability for or arising from your use of, or reliance on, information obtained from the CPS database.

# Appendix G: Site Photographs





Photo 1. The aggregate quarry to the west of the site, facing north-west



Photo 2. The possible area of quarry extension and area of concern for the investigation, facing north





Photo 3. An example of the geology at SB05, showing sand, gravel and clay material



Photo 4. An example of the geology at SB06, showing sand, gravel and clay material





Photo 5. An example of the geology at SB02, showing sand, gravel and clay material



Photo 6. An example of the geology at SB03, showing sand, gravel and clay material. Also showing the gravel layer In the middle of the push tube where a plastic layer was also present





Photo 7. An example of the rocky outcrop of the area, facing south



Photo 8. An example of the grassed surface and surface water on site, facing east

# Appendix H: Data Validation



#### Appendix H: Quality Assurance / Quality Control

The data quality assurance and control (QA/QC) procedures adopted by Senversa provide a consistent approach to evaluation of whether the data quality objectives (DQO's) required by the project have been achieved. The process focuses on assessment of the useability of the data in terms of accuracy and reliability in forming conclusions on the condition of the element of the environment being investigated. The approach is generally based on guidance from the following sources:

- Australian Standard (AS) 4482.1-2005: Guide to the investigation and sampling of sites with potentially contaminated soil, Part 1: Non-volatile and semi-volatile compounds.
- National Environment Protection Council (NEPC), National Environment Protection (Assessment of Site Contamination) Amendment Measure No. 1 2013 (NEPM), Schedule B2: Guideline on Site Characterisation.
- NEPC National Environment Protection (Assessment of Site Contamination) Amendment Measure No. 1 2013 (NEPM), Schedule B3: Guideline on Laboratory Analysis of Potentially Contaminated Soils.
- United States Environmental Protection Agency (USEPA) Guidance on Systematic Planning Using the Data Quality Objectives Process (EPA QA/G-4).
- USEPA Guidance on Environmental Data Verification and Data Validation (EPA QA/G-8).

#### Quality Assurance Procedure

The following data quality objectives, measures and acceptance criteria were adopted to verify compliance with the planned QA procedures:

| Quality Assurance<br>Process          | Data Quality<br>Element                                  | Objectives and Measure                                                       | Acceptance Criteria                                                                           |
|---------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Standard Procedures                   | Comparability,<br>Reproducibility,<br>Representativeness | Standard field sampling procedures and forms used                            | No deviation from standard procedure and forms used                                           |
| Equipment Calibration                 | Accuracy                                                 | All equipment calibrated in accordance with manufacturers specifications     | All equipment calibrated in accordance with manufacturers specifications                      |
| Testing Method<br>Accreditation       | Accuracy and Comparability                               | NATA accredited methods used for all analyses determined                     | Primary and secondary laboratories to use NATA accredited methods for all analytes determined |
| Quality Control<br>Sampling Frequency | Precision and<br>Repeatability                           | Field QC sampling frequency in accordance with AS4482.1-2005                 | Field Duplicates – ≥ 1 in 20 primary samples                                                  |
|                                       |                                                          |                                                                              | Secondary Duplicates – ≥ 1 in 20 primary samples                                              |
|                                       |                                                          |                                                                              | Rinsate Blanks – ≥ 1 per day, per matrix per equipment                                        |
|                                       |                                                          |                                                                              | Trip Blanks – ≥ 1 per esky containing samples for volatile analyses                           |
|                                       | Accuracy, Precision and Comparability                    | Laboratory QC analysis frequency in accordance with NEPC (2013), Schedule B3 | Laboratory Duplicates – at least 1 in 10 analyses or one per process batch                    |



| Quality Assurance<br>Process                          | Data Quality<br>Element | Objectives and Measure                                                                                                                                                          | Acceptance Criteria                                                                                      |
|-------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|                                                       |                         |                                                                                                                                                                                 | Method Blanks – at least 1 per process batch                                                             |
|                                                       |                         |                                                                                                                                                                                 | Surrogate Recoveries – all samples spiked where appropriate (e.g. chromatographic analysis of organics)  |
|                                                       |                         |                                                                                                                                                                                 | Laboratory Control Samples – at least 1 per process batch                                                |
|                                                       |                         |                                                                                                                                                                                 | Matrix Spikes – at least 1 per matrix type per process batch                                             |
| Sample Preservation,<br>Handling and Holding<br>Times | Accuracy                | Samples appropriately preserved upon collection , stored and transported, and analysed within holding times                                                                     | Sample containers, holding times and preservation in accordance laboratory specific method requirements. |
| Data Management                                       | Accuracy                | No errors in data transcription                                                                                                                                                 | Entry of field data verified by peer.                                                                    |
| Data Useability                                       | Completeness            | Limits of reporting less than adopted beneficial use investigation levels. Sample volumes and analytical methods selected to enable required limits of reporting to be achieved | Limits of reporting less than investigation levels.                                                      |

#### Quality Control Sampling and Analysis

The following data quality objectives, measures and acceptance criteria were adopted to evaluate the validity of the analytical data produced.

| Quality Control<br>Process                  | Data Quality<br>Element              | Objectives and Measure                                                                                                                                                                                                                                                                                                                           | Acceptance Criteria                                                                                                                                                                                                                                                                        |
|---------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Field Duplicate<br>Sampling and<br>Analysis | Precision and Field<br>Repeatability | Field duplicate samples used assess the variability in analyte concentration between samples collected from the sample location and the reproducibility of the laboratory analysis. Where required, resubmission of previously analysed samples for chemicals within their holding times may be undertaken to further assess level of precision. | Analysed for same chemicals as primary sample RPD1 <30% of mean concentration where both concentrations >20 x limit of reporting RPD <50% of mean concentration where higher concentration 10 – 20 x limit of reporting RPD - No limit where both concentrations < 10 x limit of reporting |

Appendix H Data Validation Page 2 of 4

<sup>&</sup>lt;sup>1</sup> Relative Percent Difference (%): Calculated as: (Result No.1 – Result No. 2/Mean Result)\*100



| Quality Control<br>Process                         | Data Quality<br>Element           | Objectives and Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Acceptance Criteria                                                                                                                                                                                                                                                                          |
|----------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Secondary Duplicate<br>Sampling and<br>Analysis    | Accuracy                          | Results are accurate and free from laboratory error. Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte concentrations reported by the primary laboratory                                                                                                                                                                                                                                                                                                                                                          | Analysed for same chemicals as primary sample  RPD <30% of mean concentration where both concentrations >20 x limit of reporting  RPD <50% of mean concentration where higher concentration 10 – 20 x limit of reporting  RPD - No limit where both concentrations < 10 x limit of reporting |
| Field Rinsate Blank<br>Preparation and<br>Analysis | Accuracy and Representativeness   | Cross contamination of samples does not occur between sampling locations due to carry-over from sampling equipment.  Rinsate blank samples prepared for each sampling procedure. Where possible the rinsate blanks are prepared immediately after sampling locations known to contain concentrations of the chemicals of concern above the limit of quantification and / or before sampling locations where the chemicals being targeted in the laboratory analysis are to be compared to investigation levels near the limit of quantification of the chemical. | Analyte concentrations below limits of reporting                                                                                                                                                                                                                                             |
| Trip Blank Sampling<br>and Analysis                | Accuracy and Representativeness   | Cross contamination between samples does not occur in transit or as an artefact of the sample handling procedure.  Trip blank samples prepared by the laboratory which accompany the empty sampling containers from the laboratory to the sampling site, and return with the samples to the laboratory to assess whether cross contamination occurs between samples or as an artefact of the sampling procedure.                                                                                                                                                 | Analyte concentrations below limits of reporting                                                                                                                                                                                                                                             |
| Laboratory QC<br>Analysis                          | Laboratory Precision and Accuracy | Laboratory duplicates  Laboratory control spike                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | As specified by the laboratory.  Dynamic recovery limits as specified by the laboratory.                                                                                                                                                                                                     |
|                                                    |                                   | Certified reference material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | As specified by the laboratory (generally dynamic recovery limits).                                                                                                                                                                                                                          |
|                                                    |                                   | Surrogate recovery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Dynamic recovery limits as specified by the laboratory.                                                                                                                                                                                                                                      |



| Quality Control<br>Process | Data Quality<br>Element | Objectives and Measure          | Acceptance Criteria                                                                                                                                                                                                                   |  |  |  |  |
|----------------------------|-------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                            |                         | Matrix spike recovery           | Recovery 70% – 130% or dynamic recovery limits specified by laboratory. However note that recovery of phenols is generally significantly lower and a recovery in the range 20% to 130% is considered acceptable by most laboratories. |  |  |  |  |
|                            |                         | Matrix spike recovery duplicate | RPD < 30%, or as specified by the laboratory.                                                                                                                                                                                         |  |  |  |  |

#### Data Verification and Validation

The data validation process involved the checking of analytical procedure compliance with acceptance criteria and an assessment of the accuracy and precision of analytical data from the range of quality control indicators generated from both the sampling and analytical programmes.

The checks undertaken are summarised in the attached data validation checklist tables (one table per sample batch/delivery group). Field replicate analytical results relevant to the project are summarised in Table H-1

Instances where the data quality acceptance criteria were not achieved are discussed below:

#### Laboratory Quality Control

The vast majority of laboratory quality control samples met the required rate of frequency for analysis. The exceptions to this included:

- Laboratory Duplicates RPD exists for cadmium where the RPD exceeds the LOR base limit.
- Matrix Spikes Recovery was not determined for total phosphorus as the background level was greater than or equal to 4x the spile level.

#### Field Duplicate RPDs

The following RPDs were determined to be outside of Senversa's adopted acceptance criteria for sample analysis reproducibility:

- SB04\_0.1-0.2 and QC01 for TKN and calcium, and QC02 for phosphorus.
- SB07\_0.5-0.6 and QC03 for sulfur, phosphorus, and potassium, and QC04 for TKN.

These non-conformances are likely due to the inherent heterogeneity of the fill soils sampled.

#### Data Suitability

While a small number of QC results were outside specified acceptance criteria, these were not considered to significantly impact on the quality or representativeness of the data, and majority of results indicated that the precision and accuracy of the data was within acceptable limits. The results are therefore considered to be representative of chemical concentrations in the environmental media sampled at the time of sampling, and to be suitable to be used for their intended purpose in forming conclusions relating to the contamination status of soil at the site.



NOTE: Copy these columns to right if you have multiple sample batches

| Job Number:                                  | M19067          |  |  |  |  |  |
|----------------------------------------------|-----------------|--|--|--|--|--|
| Report Title: Preliminary Site Investigation |                 |  |  |  |  |  |
| Client:                                      | Barro Group     |  |  |  |  |  |
| Completed By:                                | Lucinda Trickey |  |  |  |  |  |
| Date:                                        | 25-Aug-21       |  |  |  |  |  |
| Verified By:                                 |                 |  |  |  |  |  |
| Data                                         |                 |  |  |  |  |  |

| SAMPLE<br>DELIVERY | EM2115737         | SAMPLE<br>DELIVERY | 816742-S  |  |  |  |
|--------------------|-------------------|--------------------|-----------|--|--|--|
| GROUP (SDG):       |                   | GROUP (SDG):       |           |  |  |  |
| Laboratory:        | ALS Environmental | Laboratory:        | Eurofins  |  |  |  |
| Sample Dates:      | 10-Aug-21         | Sample Dates:      | 10-Aug-21 |  |  |  |
| Sample Media:      | Soil              | Sample Media:      | Soil      |  |  |  |

| Quality Assurance                             | Objectives & Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Acceptance Criteria                                                                    | Source of Information                                                     | Acceptance           | Notes/Details of Nonconformance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Acceptance           | Notes/Details of Nonconformance                                                                     |  |  |  |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------|--|--|--|
| Process<br>Standard Procedures                | Standard field sampling procedures and forms used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No deviation from standard procedure and                                               | Borelogs, field sheets, COCs, data                                        | Criteria Met?<br>Yes |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Criteria Met?<br>Yes |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | forms used.                                                                            | tables                                                                    | N/A                  | No. of the state o | NICA                 |                                                                                                     |  |  |  |
| Equipment Calibration                         | All equipment calibrated in accordance with<br>manufacturers specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | All equipment calibrated in accordance<br>with manufacturers specifications.           | Calibration Certificates / Records                                        | N/A                  | No equiptment requiring calibration was used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A                  |                                                                                                     |  |  |  |
| Testing Method                                | NATA accredited methods used for all analyses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Primary and secondary laboratories to use<br>NATA accredited methods for all analytes  | Laboratory Report                                                         | Yes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                  |                                                                                                     |  |  |  |
| Accreditation                                 | determined                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NATA accredited methods for all analytes<br>determined.                                |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               | Field QC sampling frequency in accordance with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Field (Intra-laboratory) Duplicates - ≥ 1 in                                           | QA/QC register (within field book)                                        | Yes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                  |                                                                                                     |  |  |  |
| Frequency                                     | AS4482.1-2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 primary samples.<br>(note that PFAS NEMP recommends 1 in                            |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 for PFAS investigations)                                                            |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Secondary (inter-laboratory) duplicates - ≥                                            | QA/QC register (within field book)                                        | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                  |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 in 20 primary samples.<br>(note that PFAS NEMP recommends 1 in                       |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10 for PFAS investigations)                                                            |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rinsate Blanks - ≥ 1 per day, per matrix<br>per equipment.                             | QA/QC register (within field book)                                        | No                   | Rinsate blanks were not analysed as no equiptment<br>requiring decontamination was used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A                  |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trip Blanks - ≥ 1 per esky containing                                                  | QA/QC register (within field book)                                        | No                   | No trip blank was analysed as volatile contaminates                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                  |                                                                                                     |  |  |  |
|                                               | Laboratory QC analysis frequency in accordance with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | samples for volatiles.  Laboratory Duplicates - at least 1 in 10                       | Laboratory Reports                                                        | Yes                  | were not of concern.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Yes                  |                                                                                                     |  |  |  |
|                                               | NEPC 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | analyses or 1 per process batch.                                                       |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Method Blanks - at least 1 per process<br>batch.                                       | Laboratory Reports                                                        | Yes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                  |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surrogate Recoveries - all samples spiked                                              | Laboratory Reports                                                        | Yes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                  |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | where appropriate (e.g. chromatographic<br>analysis of organics).                      |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Laboratory Control Samples - at least 1                                                | Laboratory Reports                                                        | Yes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                  |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | per process batch.  Matrix Spikes - at least 1 per matrix type                         | Laboratory Reports                                                        | Yes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                  |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | per process batch.                                                                     |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
| Sample Preservation,<br>Handling and Holding  | Samples appropriately preserved upon collection,<br>stored and transported, and analysed within holding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | In accordance with laboratory specific<br>method requirements.                         | Laboratory Reports                                                        | Yes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                  |                                                                                                     |  |  |  |
| Times                                         | times                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Unless specific method indicates                                                       |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | otherwise, soil and water samples should<br>be stored, transported and received by the |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | laboratory at < 6°C.                                                                   |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
| Data Management                               | No errors in data transcription                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Entry of field data verified by peer.                                                  | 10% check of electronically                                               | Yes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                  |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        | imported data (e.g. ESDAT).<br>100% check of manually entered             |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        | data (e.g. field parameters, gauging                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
| Data Useability                               | Limits of reporting less than investigation levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Limits of reporting less than relevant                                                 | data).<br>Results Tables                                                  | Yes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                  |                                                                                                     |  |  |  |
| Data Oseability                               | Limits of reporting less trial investigation levels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | investigation levels.                                                                  | Results Tables                                                            | 165                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ies                  |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
| Quality Control<br>Process                    | Objectives & Measure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Acceptance Criteria                                                                    | How? (i.e. ESDAT output, review<br>lab reports, review data etc)          | ,                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
| Field (Intra-laboratory)                      | Field Duplicate samples used assess the variability in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Analysed for same chemicals as primary                                                 | ESDAT generated summary of                                                | No                   | As shown in attached Table H-1. Elevated RPDs exist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                  |                                                                                                     |  |  |  |
| Duplicate Sampling and                        | analyte concentration between samples collected from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sample.                                                                                | relative percent difference (RPD)                                         |                      | between the primary sample SB04_0.1-0.2 and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
| Analysis                                      | the sample location and the reproducibility of the<br>laboratory analysis. Where required, resubmission of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RPD <30% of mean conc. where both conc. >20 x LOR                                      | results for field duplicate samples.                                      |                      | duplicate sample QC01 for TKN and calcium and<br>between SB07_0.5-0.6 and duplicate sample QC03 for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                                                                                                     |  |  |  |
|                                               | previously analysed samples for chemicals within their<br>holding times may be undertaken to further assess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RPD <50% of mean conc. where both                                                      |                                                                           |                      | sulfur, phosphorus and potassium.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                     |  |  |  |
|                                               | precision level of precision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | conc. 10-20 x LOR  RPD No limit where both conc. < 10 x                                |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOR                                                                                    |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
| Secondary Inter-laborator                     | Results are accurate and free from laboratory error.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Analysed for same chemicals as primary                                                 | ESDAT generated summary of                                                | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | No                   | As shown in attached Table H-1. Elevated RPDs exist                                                 |  |  |  |
| Duplicate Sampling and                        | Secondary duplicate samples sent to a secondary laboratory to assess the accuracy of the analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | sample.                                                                                | relative percent difference (RPD)<br>results for field duplicate samples. |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | between the primary sample SB04_0.1-0.2 and the<br>duplicate sample QC02 for phosphorus and between |  |  |  |
| Analysis                                      | concentrations reported by the primary laboratory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RPD <30% of mean conc. where both conc. >20 x LOR.                                     | results for field duplicate samples.                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | the SB07_0.5-0.6 and duplicate sample QC04 for                                                      |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RPD <50% of mean conc. where both                                                      |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | TKN                                                                                                 |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | conc. 10-20 x LOR.  RPD no limit where both conc. < 10 x                               |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LOR.                                                                                   |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
| Field Rinsate Blank<br>Preparation & Analysis | Cross contamination of samples does not occur<br>between sampling locations due to carry-over from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analyte concentrations below LORs.                                                     | ESDAT generated summary of<br>field blank analytical results.             | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                  |                                                                                                     |  |  |  |
|                                               | sampling equipment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                        |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
| Trip Blank Sampling and<br>Analysis           | Cross contamination between samples does not occur<br>in transit or as an artefact of the sampling handling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Analyte concentrations below LORs.                                                     | ESDAT generated summary of<br>field blank analytical results.             | N/A                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                  |                                                                                                     |  |  |  |
| Analysis                                      | procedure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        | neid blank analytical results.                                            |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
| Laboratory Duplicates                         | Laboratory duplicates are used to test the precision of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | As specified by laboratory.                                                            | Laboratory reports                                                        | No                   | Laboratory duplicate RPD exists for cadmium where the RPD exceeds the LOR based limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                  |                                                                                                     |  |  |  |
|                                               | the laboratory measurements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                        |                                                                           | ·                    | RPD exceeds the LOR based limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .,                   |                                                                                                     |  |  |  |
| Laboratory Control<br>Samples                 | Laboratory control samples (LCS) are used to assess<br>overall method performance. In general these samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        | Laboratory reports                                                        | Yes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                  |                                                                                                     |  |  |  |
|                                               | are similar in composition to environmental samples,<br>and contain known amounts of the analytes of interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                        |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               | and sometime renown amounts of the analytes of interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                        |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
| Certified Reference                           | CRM samples are used to monitor the accuracy of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | As specified by laboratory (generally                                                  | Laboratory reports                                                        | Yes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                  |                                                                                                     |  |  |  |
| Material                                      | analyses performed by the laboratory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dynamic recovery limits). Usually not<br>performed and assessed based on LCS           |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
| Comment S                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | results.                                                                               | Laboratoria                                                               | V                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                    |                                                                                                     |  |  |  |
| Surrogate Recovery                            | Surrogates are organic compounds that are similar in<br>chemical composition to analytes of interest and are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dynamic recovery limits as specified by<br>laboratory.                                 | Laboratory reports                                                        | Yes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                  |                                                                                                     |  |  |  |
|                                               | spiked into environmental samples prior to sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               | preparation and analysis. Surrogate recoveries are<br>used to evaluate matrix interference on a sample-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               | specific basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
| Makin Calles S                                | A section of the sect | D70 4000/ 1 1 " " "                                                                    | Laboratory                                                                | N-                   | MC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V                    |                                                                                                     |  |  |  |
| Matrix Spike Recovery                         | A matrix spike is an aliquot of a sample spiked with a<br>known concentration of target analyte(s). Spiking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Recovery 70 - 130% or dynamic limits if<br>specified by laboratory.                    | Laboratory reports                                                        | INO                  | MS recovery was not determined for total phosphorus<br>as the background level was greater than or equal to 4x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes                  |                                                                                                     |  |  |  |
|                                               | occurs prior to sample preparation and analysis, and<br>the results are used to assess the bias of a method in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                        |                                                                           |                      | the spike level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                                                                                                     |  |  |  |
|                                               | the results are used to assess the bias of a method in a<br>given sample matrix.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                      |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
| Laboratory Method                             | Method blanks are prepared to represent the sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analyte concentrations below LORs.                                                     | Laboratory reports                                                        | Yes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                  |                                                                                                     |  |  |  |
| Blanks                                        | matrix as closely as possible and<br>prepared/extracted/digested and analysed exactly like                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                        |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               | field samples. These blanks are used by the laboratory to assess contamination introduced during sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                        |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               | to assess contamination introduced during sample<br>preparation activities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                        |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
| Potentially Anomalous                         | No discrepancies between field, laboratory and/or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Analytical results are internally consistent,                                          | Multiple sources                                                          | Yes                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes                  |                                                                                                     |  |  |  |
| Data                                          | expected results are identified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | consistent with field measurements, and<br>consistent with expected and/or historical  |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | results based on CSM                                                                   |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                        |                                                                           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                                                                                     |  |  |  |
|                                               | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                        |                                                                           |                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                                                                     |  |  |  |



|                                |       | Location Code SB04_0.1-0 |              | _0.1-0.2   |     |              | SB04_0.1-0.2 |     | SB07_0.5-0.6 |            |     | SB07_0.5-0.6 |            |          |
|--------------------------------|-------|--------------------------|--------------|------------|-----|--------------|--------------|-----|--------------|------------|-----|--------------|------------|----------|
|                                |       | Field ID                 | SB04_0.1-0.2 | QC01       |     | SB04_0.1-0.2 | QC02         |     | SB07_0.5-0.6 | QC03       |     | SB07_0.5-0.6 | QC04       |          |
|                                |       | Date                     | 10/08/2021   | 10/08/2021 |     | 10/08/2021   | 10/08/2021   |     | 10/08/2021   | 10/08/2021 |     | 10/08/2021   | 10/08/2021 |          |
|                                |       | Sample Type              | Normal       | Field_D    |     | Normal       | Interlab_D   |     | Normal       | Field_D    |     | Normal       | Interlab_D | <b>-</b> |
|                                |       | Lab Report Number        | EM2115737    | EM2115737  | RPD | EM2115737    | 816742       | RPD | EM2115737    | EM2115737  | RPD | EM2115737    | 816742     | RPD      |
|                                |       |                          |              |            |     |              | I            |     |              |            |     |              |            |          |
|                                | Unit  | EQL                      |              |            |     |              |              |     |              |            |     |              |            |          |
| NA                             |       |                          |              |            |     |              |              |     |              |            |     |              |            |          |
| Sulfur - Total as S (LECO)     | %     | 0.01                     | 0.01         | 0.02       | 67  | 0.01         | -            | -   | 4.11         | 0.86       | 131 | 4.11         | -          | -        |
| Physical Parameters            |       |                          |              |            |     |              |              |     |              |            |     |              |            |          |
| Moisture Content               | %     | 1                        | 3.6          | 4.6        | 24  | 3.6          | 4.2          | 15  | 8.8          | 8.1        | 8   | 8.8          | 9.9        | 12       |
| Inorganics                     |       |                          |              |            |     |              |              |     |              |            |     |              |            |          |
| Ammonia (as N)                 | mg/kg | 5                        | <20          | <20        | 0   | <20          | 5.9          | 0   | <20          | <20        | 0   | <20          | <5         | 0        |
| Nitrate (as N)                 | mg/kg | 0.1                      | 0.3          | 0.3        | 0   | 0.3          | <5           | 0   | 0.1          | 0.1        | 0   | 0.1          | <5         | 0        |
| Nitrite (as N)                 | mg/kg | 0.1                      | <0.1         | < 0.1      | 0   | <0.1         | <5           | 0   | <0.1         | < 0.1      | 0   | < 0.1        | <5         | 0        |
| Total Oxidised Nitrogen (as N) | mg/kg | 0.1                      | 0.3          | 0.3        | 0   | 0.3          | -            | -   | 0.1          | 0.1        | 0   | 0.1          | -          | -        |
| Total Kjeldahl Nitrogen        | mg/kg | 10                       | 140          | 480        | 110 | 140          | 150          | 7   | 260          | 220        | 17  | 260          | 880        | 109      |
| Total Nitrogen (as N)          | mg/kg | 20                       | 140          | 480        | 110 | 140          | -            | -   | 260          | 220        | 17  | 260          | -          | -        |
| Phosphorus (as P)              | mg/kg | 2                        | 194          | 116        | 50  | 194          | 45           | 125 | 3,850        | 2,240      | 53  | 3,850        | 4,200      | 9        |
| Ortho-phosphate (as P)         | mg/kg | 0.1                      | 0.1          | <0.1       | 0   | 0.1          | <10          | 0   | 50.8         | 66.9       | 27  | 50.8         | 39         | 26       |
| Sulfur (as S)                  | mg/kg | 5                        | -            | -          | -   | -            | 28           | -   | -            | -          | -   | -            | 39,000     | -        |
| Major lons                     |       |                          |              |            |     |              |              |     |              |            |     |              |            |          |
| Calcium                        | mg/kg | 5                        | -            | -          | -   | -            | 620          | -   | -            | -          | -   | -            | 63,000     | -        |
| Calcium (filtered)             | mg/kg | 5                        | 30           | 110        | 114 | 30           | -            | -   | 3,720        | 3,570      | 4   | 3,720        | -          | -        |
| Magnesium                      | mg/kg | 5                        | -            | -          | -   | -            | 4,600        | -   | -            | -          | -   | -            | 800        | -        |
| Magnesium (filtered)           | mg/kg | 5                        | 10           | 20         | 67  | 10           | -            | -   | 60           | 90         | 40  | 60           | -          | -        |
| Potassium                      | mg/kg | 5                        | -            | -          | -   | -            | 4,200        | -   | -            | -          | -   | -            | 1,500      | -        |
| Potassium (filtered)           | mg/kg | 5                        | 20           | 30         | 40  | 20           | -            | -   | 220          | 310        | 34  | 220          | -          | -        |
| Sodium                         | mg/kg | 5                        | -            | -          | -   | -            | 120          | -   | -            | -          | -   | -            | 390        | -        |
| Sodium (filtered)              | mg/kg | 5                        | 30           | 40         | 29  | 30           | -            | -   | 70           | 110        | 44  | 70           | -          | -        |
| Metals                         |       |                          |              |            |     |              |              |     |              |            |     |              |            |          |
| Boron                          | mg/kg | 10                       | <50          | <50        | 0   | <50          | <10          | 0   | <50          | <50        | 0   | <50          | <10        | 0        |
| Cadmium                        | mg/kg | 0.4                      | <1           | <1         | 0   | <1           | <0.4         | 0   | 2            | <1         | 67  | 2            | 1.8        | 11       |
| Copper                         | mg/kg | 5                        | 6            | 5          | 18  | 6            | 10           | 50  | <5           | <5         | 0   | <5           | <5         | 0        |
| Manganese                      | mg/kg | 5                        | 149          | 174        | 15  | 149          | 200          | 29  | 96           | 65         | 39  | 96           | 71         | 30       |
| Molybdenum                     | mg/kg | 2                        | <2           | <2         | 0   | <2           | <5           | 0   | <2           | <2         | 0   | <2           | <5         | 0        |
| Zinc                           | mg/kg | 5                        | 19           | 19         | 0   | 19           | 30           | 45  | 19           | 7          | 92  | 19           | 15         | 24       |

<sup>\*</sup>RPDs have only been considered where a concentration is greater than 1 times the EQL.

<sup>\*\*</sup>Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 1000 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 (> 20 x EQL))
\*\*\*Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

# Appendix I: Borelogs



|        |                      |       | 1               | )                                                    |             |                          |                                                                           |                                                                                                       |                            |           |    | PAGE 1 OF 1                        |
|--------|----------------------|-------|-----------------|------------------------------------------------------|-------------|--------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------|-----------|----|------------------------------------|
|        | S⊘I                  | ١V    | or:             | sa                                                   |             |                          |                                                                           |                                                                                                       |                            |           |    |                                    |
| PR     | OJEC                 | T NU  | JMBE            | R_M                                                  | 11906       |                          | · · · · · · · · · · · · · · · · · · ·                                     | iver Preliminary Site Investigation  0 Drysdale Road, Little River                                    |                            |           |    |                                    |
|        |                      |       |                 |                                                      |             |                          |                                                                           | LOGGED BY KC                                                                                          | CHECK                      | FD R\     | ,  | VR                                 |
|        |                      |       | _               |                                                      |             |                          |                                                                           |                                                                                                       |                            |           |    |                                    |
|        |                      |       |                 |                                                      |             | Geoprobe                 |                                                                           | DIMENSIONS 50 mm diameter                                                                             |                            |           |    |                                    |
| GR     | OUNI                 | OWA   | TER             | NOTE                                                 | :s _1       | Not encoun               | tered during drilling                                                     | CASING LEVEL                                                                                          | SURFA                      | CE LE     | VE | :L                                 |
| GE     | NER/                 | AL N  | OTES            |                                                      |             |                          |                                                                           |                                                                                                       |                            |           |    |                                    |
|        | _                    |       | ORILLIN         | G                                                    |             | c                        | T                                                                         | FIELD MATERIAL DESCRIPTION                                                                            | I                          |           |    | SAMPLING                           |
| Method | Core<br>Recovery (%) | Water | Well<br>Details | Depth<br>(m)                                         | Graphic Log | Classification<br>Symbol |                                                                           | <i>I</i> laterial Description                                                                         | Additional<br>Observations | PID (ppm) |    | Sample ID<br>& Interval<br>(QA/QC) |
| PT     |                      |       |                 | _                                                    |             | FILL                     | FILL: Clayey SAND, medium to co<br>plasticity clay, trace gravel, pale br | arse, poorly graded, sub-angular sand, medium own, loose, moist.                                      |                            |           |    | 0004 0 40 0 00                     |
|        |                      |       |                 | _                                                    |             |                          |                                                                           |                                                                                                       |                            |           |    | SB01_0.10 - 0.20                   |
|        |                      |       |                 | 0.5                                                  |             | FILL                     | FILL: Sandy CLAY, medium plastic<br>angular sand, trace gravel, pale br   | city, fine to medium, poorly graded, sub-angular to rown, firm to stiff, moist, dry of plastic limit. |                            |           |    |                                    |
|        |                      |       |                 | _                                                    |             |                          |                                                                           |                                                                                                       |                            |           |    | SB01_0.50 - 0.60                   |
|        |                      |       |                 | _                                                    |             |                          |                                                                           |                                                                                                       |                            |           |    |                                    |
|        |                      |       |                 | 1 <u>.0</u>                                          |             | FILL                     | FILL: Gravelly SAND, medium to c sand, fine to medium, sub-rounded        | coarse, poorly graded, sub-rounded to sub-angular<br>d to sub-angular gravel, pale grey, loose, dry.  |                            |           |    | SB01_0.90 - 1.00                   |
|        |                      |       |                 | _                                                    |             |                          |                                                                           |                                                                                                       |                            |           |    | SB01_1.10 - 1.20                   |
|        |                      |       |                 | -<br>1.5<br>-<br>-<br>2.0<br>-<br>-<br>-<br>2.5<br>- |             |                          | SB01 terminated at 1.20 m bgl<br>Equipment refusal on inferred natu       | ural rock                                                                                             |                            |           |    |                                    |
|        |                      |       |                 | 3 <u>.0</u>                                          |             |                          |                                                                           |                                                                                                       |                            |           |    |                                    |

PAGE 1 OF 1



PROJECT NAME Little River Preliminary Site Investigation

PROJECT NUMBER M19067 PROJECT LOCATION 250 Drysdale Road, Little River

DATE STARTED 10/8/21 COMPLETED 10/8/21 LOGGED BY KC CHECKED BY VR

CONTRACTOR Qest Infrastructure LOCATION (Easting, Northing, Zone) 274386 5800158 55H

EQUIPMENT Push Tube - Geoprobe DIMENSIONS 50 mm diameter INCLINATION Vertical

GROUNDWATER NOTES Not encountered during drilling CASING LEVEL - SURFACE LEVEL -

|        | DRILLING FIELD MATERIAL DESCRIPTION |       |                 |              |             |                          | SAMPLING                                                                                                                                                             |                            |           |  |                                    |  |
|--------|-------------------------------------|-------|-----------------|--------------|-------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|--|------------------------------------|--|
| -      | _                                   |       | KILLIN          | <u> </u>     |             | <u> </u>                 |                                                                                                                                                                      |                            |           |  |                                    |  |
| Method | Core<br>Recovery (%)                | Water | Well<br>Details | Depth<br>(m) | Graphic Log | Classification<br>Symbol | Material Description                                                                                                                                                 | Additional<br>Observations | PID (ppm) |  | Sample ID<br>& Interval<br>(QA/QC) |  |
| Τ      |                                     |       |                 |              |             | FILL                     | FILL: Sandy SILT, non-plastic silt, fine, poorly graded, sub-rounded to sub-angular sand, trace organic material (grass), brown, soft, dry.                          |                            |           |  |                                    |  |
|        |                                     |       |                 |              |             |                          |                                                                                                                                                                      |                            |           |  | SB02_0.10 - 0.20                   |  |
|        |                                     |       |                 |              |             |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 |              |             | FILL                     | FILL: SILT, non-plastic, white, soft, dry.                                                                                                                           |                            |           |  |                                    |  |
|        |                                     |       |                 | 0 <u>.5</u>  |             |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 |              |             |                          |                                                                                                                                                                      |                            |           |  | SB02_0.50 - 0.60                   |  |
|        |                                     |       |                 |              |             |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 |              |             |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 |              |             |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 | 1 <u>.0</u>  |             | FILL                     | Anthropogenic material including a thin layer of clear plastic.                                                                                                      |                            |           |  | SB02_0.90 - 1.00                   |  |
|        |                                     |       |                 |              |             | CI                       | Sandy CLAY: Medium plasticity, medium to coarse, poorly graded, sub-rounded to sub-angular sand, trace gravel, pale grey-brown, firm to stiff, moist, dry of plastic |                            |           |  |                                    |  |
|        |                                     |       |                 |              |             |                          | limit.                                                                                                                                                               |                            |           |  |                                    |  |
|        |                                     |       |                 | -            | 크           |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 | -            |             |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 | 1 <u>.5</u>  |             |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 | -            | 긐           |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 | -            | 彐           |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 |              |             |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 | 2.0          | 킄           |                          |                                                                                                                                                                      |                            |           |  | SB02_1.90 - 2.0                    |  |
|        |                                     |       |                 |              | $\equiv$    |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 |              |             |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 |              | 킄           |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 |              | 킄           |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 | 2 <u>.5</u>  |             |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 |              |             |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 |              |             |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 |              | 莒           |                          |                                                                                                                                                                      |                            |           |  |                                    |  |
|        |                                     |       |                 |              |             |                          |                                                                                                                                                                      |                            |           |  | SB02_2.90 - 3.0                    |  |
| J      |                                     |       | 1               | 3.0          |             |                          |                                                                                                                                                                      | 1                          | 1         |  |                                    |  |



|        |                      |       | 1               | )                                                                     |             |                          |                                                                                                     |                                                                                                |                            |           |     | PAGE 1 OF 1                          |
|--------|----------------------|-------|-----------------|-----------------------------------------------------------------------|-------------|--------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------|-----------|-----|--------------------------------------|
| S      | or                   | ١V    | or:             | sa                                                                    |             |                          |                                                                                                     |                                                                                                |                            |           |     |                                      |
| PRO    | OJEC                 | T NI  | JMBE            | :R _1                                                                 | И1906       |                          | · · · · · · · · · · · · · · · · · · ·                                                               | iver Preliminary Site Investigation  0 Drysdale Road, Little River                             | 1                          |           |     |                                      |
| DAT    | TE ST                | [AR]  | ΓED             | 10/8                                                                  | /21         | CO                       | MPLETED 10/8/21                                                                                     | LOGGED BY JH                                                                                   | CHECK                      | ED BY     | , v | /R                                   |
|        |                      |       | _               |                                                                       |             |                          | 10,0,21                                                                                             |                                                                                                |                            |           |     |                                      |
|        |                      |       |                 |                                                                       |             | Geoprobe                 |                                                                                                     | DIMENSIONS 50 mm dian                                                                          |                            |           |     |                                      |
| GR     | OUNI                 | OWA   | TER             | NOTE                                                                  | ES _1       | Not encoun               | tered during drilling                                                                               | CASING LEVEL                                                                                   | SURFA                      | CE LE     | VEL |                                      |
| GEI    | NER/                 | AL N  | OTES            |                                                                       |             |                          |                                                                                                     |                                                                                                |                            |           |     |                                      |
|        |                      |       | RILLIN          | G                                                                     |             |                          |                                                                                                     | FIELD MATERIAL DESCRIPTION                                                                     |                            |           |     | SAMPLING                             |
| Method | Core<br>Recovery (%) | Water | Well<br>Details | Depth<br>(m)                                                          | Graphic Log | Classification<br>Symbol | ,                                                                                                   | Material Description                                                                           | Additional<br>Observations | PID (ppm) |     | Sample ID<br>& Interval<br>(QA/QC)   |
| PT     |                      |       |                 | -<br>-<br>-<br>0 <u>.5</u>                                            |             | FILL                     | FILL: Sity SAND, fine to medium,<br>non-plastic silt, trace gravel, pale I<br>trace wood fragments. | poorly graded, sub-angular to angular sand,<br>brown, loose, dry, anthropogenic material incl  | uding                      |           |     | SB03_0.10 - 0.20<br>SB03_0.50 - 0.60 |
|        |                      |       |                 | -<br>-<br>-<br>1 <u>.0</u>                                            |             | CI                       | Gravelly CLAY: Medium plasticity sand, pale grey, stiff, moist, near p                              | clay, fine, poorly graded, sub-angular gravel, i<br>plastic limit.                             | trace                      |           |     | SB03_0.90 - 1.00                     |
|        |                      |       |                 | 1.5                                                                   |             | GP                       | graded, sub-rounded to sub-angu<br>dry.                                                             | ded, sub-rounded gravel, fine to medium, poor<br>lar sand, pale grey mottled yellow, medium de | rly<br>nse,                |           |     | SB03_1.40 - 1.50                     |
|        |                      |       |                 | <br><br>2 <u>.00</u><br><br>-<br>-<br>2 <u>.55</u><br><br>-<br>-<br>- |             |                          | SB03 terminated at 1.50 m bgl<br>Equipment refusal on inferred nate                                 | ural rock                                                                                      |                            |           |     |                                      |

| /     | 1   |
|-------|-----|
| sonve | rsa |

|        |                                          |                                         | 1               |                            |                          |                                                                       |                                                                                                            |                            |           | PAGE 1 OF 1                        |
|--------|------------------------------------------|-----------------------------------------|-----------------|----------------------------|--------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|----------------------------|-----------|------------------------------------|
| 5      | sor                                      | ٦V                                      | er:             | sa                         |                          |                                                                       |                                                                                                            |                            |           |                                    |
|        |                                          |                                         |                 |                            | ı                        | PROJECT NAME Little F                                                 | River Preliminary Site Investigation                                                                       |                            |           |                                    |
| PR     | OJEC                                     | T N                                     | JMBE            | R M1906                    | 67 <b>I</b>              | PROJECT LOCATION 25                                                   | 50 Drysdale Road, Little River                                                                             |                            |           |                                    |
| DA     | TE S1                                    | [AR]                                    | ΓED             | 10/8/21                    | cc                       | <b>DMPLETED</b> 10/8/21                                               | LOGGED BY JH                                                                                               | CHECK                      | ED BY     | VR                                 |
|        |                                          |                                         |                 | Qest Infrast               |                          |                                                                       | LOCATION (Easting, Northing,                                                                               |                            |           | -                                  |
|        |                                          |                                         |                 | sh Tube - C                |                          |                                                                       | DIMENSIONS 50 mm diamete                                                                                   |                            |           |                                    |
| GR     | OUNI                                     | OWA                                     | TER I           | NOTES _1                   | Not encoun               | tered during drilling                                                 | CASING LEVEL                                                                                               | SURFA                      | CE LE     | VEL                                |
| GE     | NER/                                     | AL N                                    | OTES            |                            |                          |                                                                       |                                                                                                            |                            |           |                                    |
|        |                                          |                                         | RILLIN          | G                          |                          |                                                                       | FIELD MATERIAL DESCRIPTION                                                                                 |                            |           | SAMPLING                           |
| Method | Core<br>Recovery (%)                     | Water                                   | Well<br>Details | (M) (yddad Graphic Log     | Classification<br>Symbol |                                                                       | Material Description                                                                                       | Additional<br>Observations | PID (ppm) | Sample ID<br>& Interval<br>(QA/QC) |
| PT     | 20 20 20 20 20 20 20 20 20 20 20 20 20 2 | M N N N N N N N N N N N N N N N N N N N | »ă              | (m) 5<br>                  | Ö FILL                   | sub-rounded to sub-angular sant<br>sub-angular gravel, brown, firm, i | / clay, fine to medium, poorly graded, sub-rounded nite mottled brown, stiff, moist, dry of plastic limit. |                            | ā         | SB04_0.10 - 0.20<br>(QC01 & QC02)  |
|        |                                          |                                         |                 | _<br>_<br>_<br>3 <u>.0</u> |                          |                                                                       |                                                                                                            |                            |           |                                    |

PAGE 1 OF 1



| PROJECT NAME Little River                                      | Preliminary Site Investigation                        |
|----------------------------------------------------------------|-------------------------------------------------------|
| PROJECT NUMBER _M19067 PROJECT LOCATION _250 Dr                | rysdale Road, Little River                            |
| DATE STARTED         10/8/21         COMPLETED         10/8/21 | LOGGED BY JH CHECKED BY VR                            |
| CONTRACTOR Qest Infrastructure                                 | LOCATION (Easting, Northing, Zone) 274401 5800038 55H |
| EQUIPMENT Push Tube - Geoprobe                                 | DIMENSIONS 50 mm diameter INCLINATION Vertical        |
| GROUNDWATER NOTES Not encountered during drilling              | _ CASING LEVEL SURFACE LEVEL                          |

|         | DRILLING FIELD MATERIAL DESCRIPTION |       |                 |              |             |                          |                                                                                                                                                                                                                                                         | SAMPLING                   |           |  |                                    |  |
|---------|-------------------------------------|-------|-----------------|--------------|-------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|--|------------------------------------|--|
| Metilod | Core<br>Recovery (%)                | Water | Well<br>Details | Depth<br>(m) | Graphic Log | Classification<br>Symbol | Material Description                                                                                                                                                                                                                                    | Additional<br>Observations | PID (ppm) |  | Sample ID<br>& Interval<br>(QA/QC) |  |
| Т       |                                     |       |                 |              |             | FILL                     | FILL: Gravelly Silty SAND, fine to medium, poorly graded, sub-rounded to sub-angular sand, fine grained, sub-rounded to sub-angular gravel, non-plastic silt,                                                                                           |                            |           |  |                                    |  |
|         |                                     |       |                 | -<br>-<br>-  |             | FILL                     | light brown, loose, dry.  FILL: Sandy Gravelly CLAY, low plasticity clay, medium to coarse, poorly graded, sub-rounded to sub-angular sand, fine to medium, poorly graded, sub-rounded to sub-angular gravel, brown, firm, moist, dry of plastic limit. |                            |           |  | SB05_0.10 - 0.2                    |  |
|         |                                     |       |                 | 0 <u>.5</u>  |             | FILL                     | FILL: SAND, fine to medium, poorly graded, sub-rounded to sub-angular sand, trace gravel, pale brown, medium dense, dry.                                                                                                                                |                            |           |  | SB05_0.50 - 0.6                    |  |
|         |                                     |       |                 | 1 <u>.0</u>  | ***         | SP                       | Gravelly SAND: Fine to medium, poorly graded, sub-rounded to sub-angular sand, fine, poorly graded, sub-rounded to sub-angular gravel, pale brown, dense, dry.                                                                                          |                            |           |  | SB05_1.10 - 1.2                    |  |
|         |                                     |       |                 | - 1.5 2.0    |             |                          |                                                                                                                                                                                                                                                         |                            |           |  |                                    |  |

PAGE 1 OF 1



| DDO IECT NAME | Little Diver Proliminary Cite Investigation |
|---------------|---------------------------------------------|
| PROJECT NAME  | Little River Preliminary Site Investigation |

| PROJECT NUMBER M19067 PROJECT LOCATION 250 Dry    | ysdale Road, Little River                             |
|---------------------------------------------------|-------------------------------------------------------|
| <b>DATE STARTED</b> _10/8/21                      | LOGGED BY JH CHECKED BY VR                            |
| CONTRACTOR Qest Infrastructure                    | LOCATION (Easting, Northing, Zone) 274468 5800040 55H |
| EQUIPMENT Push Tube - Geoprobe                    | DIMENSIONS 50 mm diameter INCLINATION Vertical        |
| GROUNDWATER NOTES Not encountered during drilling | CASING LEVEL SURFACE LEVEL                            |

|      |                      | D     | RILLIN          | G                                                           |             |                          | FIELD MATERIAL DESCRIPTION                                                                                                                                                                               |                            |           | SAMPLING                           |
|------|----------------------|-------|-----------------|-------------------------------------------------------------|-------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|------------------------------------|
| 5000 | Core<br>Recovery (%) | Water | Well<br>Details | Depth<br>(m)                                                | Graphic Log | Classification<br>Symbol | Material Description                                                                                                                                                                                     | Additional<br>Observations | PID (ppm) | Sample ID<br>& Interval<br>(QA/QC) |
| Т    |                      |       |                 | 0.5                                                         |             | FILL                     | FILL: Gravelly Silty SAND, fine to medium, poorly graded, sub-rounded to sub-angular sand, fine, poorly graded, sub-rounded to sub-angular gravel, non-plastic silt, light brown, loose, dry.            |                            |           | SB06_0.10 - 0.2                    |
|      |                      |       |                 |                                                             |             | FILL                     | FILL: Sandy SILT, non plastic, fine, poorly graded, sub-rounded to sub-angular sand, non-plastic silt, dark brown, soft, moist, anthropogenic material including trace wood fragments and plastic layer. |                            |           | SB06_0.50 - 0.6                    |
|      |                      |       |                 | 1 <u>.0</u>                                                 | <b>XXX</b>  | SP                       | SAND: Coarse, poorly graded, sub-angular sand, pale grey, dense, dry.  SB06 terminated at 1.10 m bgl Equipment refusal on inferred rock                                                                  |                            |           | SB06_1.00 - 1.1                    |
|      |                      |       |                 | 1.5<br>-<br>-<br>2.0<br>-<br>-<br>2.5<br>-<br>-<br>-<br>3.0 |             |                          |                                                                                                                                                                                                          |                            |           |                                    |

PAGE 1 OF 1



1. SENVERSA STANDARD M19067 BORELOGS.GPJ SENVERSA GINT.GDT 1/9/21

PROJECT NAME Little River Preliminary Site Investigation

| PROJECT NUMBER M19067 PROJECT LOCATION 250 Dr     | ysdale Road, Little River            |                      |
|---------------------------------------------------|--------------------------------------|----------------------|
| DATE STARTED _10/8/21COMPLETED _10/8/21           | LOGGED BY JH                         | CHECKED BY VR        |
| CONTRACTOR Qest Infrastructure                    | LOCATION (Easting, Northing, Zone) 2 | 74469 5800043 55H    |
| EQUIPMENT Push Tube - Geoprobe                    | DIMENSIONS _50 mm diameter           | INCLINATION Vertical |
| GROUNDWATER NOTES Not encountered during drilling | CASING LEVEL                         | SURFACE LEVEL -      |
|                                                   |                                      |                      |

**GENERAL NOTES** FIELD MATERIAL DESCRIPTION SAMPLING Classification Symbol Core Recovery (%) PID (ppm) Log Sample ID Additional **Graphic L** Well Details Water Material Description & Interval Observations Depth (m) (QA/QC) FILL: Silty SAND, medium to coarse, poorly graded, sub-angular sand, non-plastic silt, trace gravel, pale grey-brown, medium dense, moist. SB07 0.10 - 0.20 FILL: Gravelly Sitty SAND, medium to coarse, poorly graded, sub-angular sand, fine, poorly graded, sub-angular gravel, non-plastic silt, pale grey-brown, loose, dry. FILL FILL: GRAVEL, fine, poorly graded, sub-rounded gravel, pale brown, loose, dry, anthropogenic material including a trace layer of plastic. FILL SB07\_0.50 - 0.60 (QC03 & QC04) Gravelly Clayey SAND: Medium to coarse, poorly graded, sub-rounded to sub-angular sand, fine, poorly graded, sub-rounded to sub-angular gravel, low plasticity clay, brown, loose, moist. SP SB07\_0.90 - 1.00 1.0 Pale grey. SB07\_1.40 - 1.50 SB07 terminated at 1.50 m bgl Equipment refusal on inferred natural rock 2<u>.0</u> 2.5 3.0



|        |                      |       | 1               | )            |             |                          |                                                                                                                                                                                                                                 |                            |           | PAGE 1 OF 1                        |
|--------|----------------------|-------|-----------------|--------------|-------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------|------------------------------------|
|        | s⊘r                  | 1V    | <sub>or</sub>   | sa           |             |                          |                                                                                                                                                                                                                                 |                            |           |                                    |
|        | O 150                | T NI  |                 | -D \         | 44006       |                          |                                                                                                                                                                                                                                 |                            |           |                                    |
|        |                      |       |                 |              |             |                          | PROJECT LOCATION 250 Drysdale Road, Little River                                                                                                                                                                                |                            |           |                                    |
|        |                      |       |                 |              |             |                          | DMPLETED         10/8/21         LOGGED BY JH           LOCATION (Easting, Northing,                                                                                                                                            |                            |           |                                    |
| ı      |                      |       |                 |              |             |                          | DIMENSIONS 50 mm diamete                                                                                                                                                                                                        |                            |           |                                    |
|        |                      |       |                 |              |             |                          | tered during drilling CASING LEVEL -                                                                                                                                                                                            |                            |           |                                    |
| GE     | NER/                 | AL N  | OTES            | <u> </u>     |             |                          |                                                                                                                                                                                                                                 |                            |           |                                    |
|        |                      | -     | ORILLI          | NG           |             | <u></u>                  | FIELD MATERIAL DESCRIPTION                                                                                                                                                                                                      | T                          |           | SAMPLING                           |
| Method | Core<br>Recovery (%) | Water | Well<br>Details | Depth<br>(m) | Graphic Log | Classification<br>Symbol | Material Description                                                                                                                                                                                                            | Additional<br>Observations | PID (ppm) | Sample ID<br>& Interval<br>(QA/QC) |
| PT     |                      |       |                 | -            |             | FILL                     | FILL: Gravelly Silty SAND, fine to medium, poorly graded, sub-rounded to sub-angular sand, fine, poorly graded, sub-rounded to sub-angular gravel, non-plastic silt, light brown, loose, dry.                                   |                            |           | SB08_0.10 - 0.20                   |
|        |                      |       |                 | -            |             | CI                       | Gravelly Sandy CLAY: Medium plasticity, medium, poorly graded, sub-rounded to sub-angular gravel, fine to medium, poorly graded, sub-rounded to sub-angular sand, orange mottled pale brown, firm, moist, dry of plastic limit. | -                          |           |                                    |
|        |                      |       |                 | 0 <u>.5</u>  |             |                          |                                                                                                                                                                                                                                 |                            |           | SB08_0.50 - 0.60                   |
|        |                      |       |                 | -            |             |                          |                                                                                                                                                                                                                                 |                            |           |                                    |
|        |                      |       |                 | 1 <u>.0</u>  |             |                          | Suff.                                                                                                                                                                                                                           | _                          |           | SB08_1.00 - 1.10                   |
|        |                      |       |                 | -            |             |                          | Very stiff.                                                                                                                                                                                                                     | _                          |           |                                    |
|        |                      |       |                 | 1.5          |             |                          |                                                                                                                                                                                                                                 |                            |           | SB08_1.40 - 1.50                   |
|        |                      |       |                 | -            |             |                          | SB08 terminated at 1.50 m bgl<br>Equipment refusal on inferred natural rock                                                                                                                                                     |                            |           |                                    |
|        |                      |       |                 | _            | -           |                          |                                                                                                                                                                                                                                 |                            |           |                                    |
|        |                      |       |                 | 2 <u>.0</u>  | -           |                          |                                                                                                                                                                                                                                 |                            |           |                                    |
|        |                      |       |                 | -            | -           |                          |                                                                                                                                                                                                                                 |                            |           |                                    |
| [      |                      |       |                 | -            | -           |                          |                                                                                                                                                                                                                                 |                            |           |                                    |
|        |                      |       |                 | 2 <u>.5</u>  | -           |                          |                                                                                                                                                                                                                                 |                            |           |                                    |
|        |                      |       |                 | -            | -           |                          |                                                                                                                                                                                                                                 |                            |           |                                    |
|        |                      |       |                 | 3 <u>.0</u>  | _           |                          |                                                                                                                                                                                                                                 |                            |           |                                    |

| /       | ) |
|---------|---|
| sonvors | a |

| 5      | s⊘r                  | าง       | er:             | sa               |             |                          |                                                                                          |                                                                                              |                            |           |          | TAGE TOT T                         |
|--------|----------------------|----------|-----------------|------------------|-------------|--------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------|-----------|----------|------------------------------------|
|        | 0.150                | <b>.</b> |                 |                  | 14000       |                          |                                                                                          | River Preliminary Site Investigation                                                         |                            |           |          |                                    |
|        |                      |          | JMBE            |                  |             |                          |                                                                                          | 50 Drysdale Road, Little River                                                               | 0.1501                     |           |          |                                    |
|        |                      |          |                 |                  |             | cc<br>ructure            | OMPLETED 10/8/21                                                                         | LOGGED BY JH  LOCATION (Easting, Northing                                                    |                            |           |          |                                    |
|        |                      |          |                 |                  |             | Geoprobe                 |                                                                                          | DIMENSIONS 50 mm diamet                                                                      |                            |           |          |                                    |
|        |                      |          |                 |                  |             |                          |                                                                                          | CASING LEVEL                                                                                 |                            |           |          |                                    |
|        |                      |          | OTES            |                  |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          | RILLIN          | G                |             |                          |                                                                                          | FIELD MATERIAL DESCRIPTION                                                                   |                            |           | SAMPLING |                                    |
| Method | Core<br>Recovery (%) | Water    | Well<br>Details | Depth<br>(m)     | Graphic Log | Classification<br>Symbol | ,                                                                                        | Material Description                                                                         | Additional<br>Observations | PID (ppm) |          | Sample ID<br>& Interval<br>(QA/QC) |
| PT     |                      |          |                 | -                |             | GP                       | Sandy GRAVEL: Fine to medium, gravel, medium to coarse, poorly brown, medium dense, dry. | , poorly graded, sub-rounded to sub-angular<br>graded, sub-rounded to sub-angular sand, pale |                            |           |          | SB09_0.00 - 0.10                   |
|        |                      |          |                 | _                |             |                          | SB09 terminated at 0.15 m bgl<br>Equipment refusal on inferred rock                      | ·k                                                                                           |                            |           |          |                                    |
|        |                      |          |                 | _                |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 | 0 <u>.5</u><br>– |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 | _                |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 | _                |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 | 1 <u>.0</u>      |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 | _                |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 | _                |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 | 1 <u>.5</u>      |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 | _                |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 | _                |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 | 2 <u>.0</u><br>_ |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 | _                |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 | 2.5              |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 | _ <u></u><br>_   |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 | _                |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 | 3 <u>.0</u>      |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |
|        |                      |          |                 |                  |             |                          |                                                                                          |                                                                                              |                            |           |          |                                    |



|                                                          | s⊘r                  | าง    | o.r             | Sa           |               |                          |                                                                    |                                                                                                                                                                       |                 |                   |                   |    |      |           |             | PAGE 1 OF 1                        |  |  |  |
|----------------------------------------------------------|----------------------|-------|-----------------|--------------|---------------|--------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|-------------------|----|------|-----------|-------------|------------------------------------|--|--|--|
|                                                          |                      |       |                 |              | И1 <u>906</u> |                          | PROJECT NA                                                         |                                                                                                                                                                       |                 |                   | Investigation     |    |      |           |             |                                    |  |  |  |
|                                                          |                      |       |                 |              |               |                          |                                                                    |                                                                                                                                                                       |                 |                   |                   | CI | HECK | ED BY     | / _\        | VR                                 |  |  |  |
| cc                                                       | ONTR/                | CTC   | OR _            | Qest I       | nfrast        | ructure                  |                                                                    | LOCATION (Easting, Northing, Zone) 274595 5799958 55H                                                                                                                 |                 |                   |                   |    |      |           |             |                                    |  |  |  |
| - 1                                                      |                      |       |                 |              |               | Seoprobe                 |                                                                    |                                                                                                                                                                       |                 |                   |                   |    |      |           |             |                                    |  |  |  |
|                                                          |                      |       |                 |              | S _ N         | Not encour               | untered during drilling CASING LEVEL - SURF                        |                                                                                                                                                                       |                 |                   |                   |    |      |           | ACE LEVEL - |                                    |  |  |  |
| GE                                                       | NER/                 |       | OTES            |              |               |                          | FIELD MATERIAL DESCRIPTION                                         |                                                                                                                                                                       |                 |                   |                   |    |      | SAMPLING  |             |                                    |  |  |  |
| Method                                                   | Core<br>Recovery (%) | Water | Well<br>Details | Depth<br>(m) | Graphic Log   | Classification<br>Symbol | Material Description Additional Observations                       |                                                                                                                                                                       |                 |                   |                   |    |      | PID (ppm) |             | Sample ID<br>& Interval<br>(QA/QC) |  |  |  |
| PT                                                       |                      |       |                 |              |               | FILL                     | FILL: Silty SAN silt, trace grave                                  | FILL: Silty SAND, medium to coarse, poorly graded, sub-angular sand, non-plastic silt, trace gravel, pale grey-brown, medium dense, moist.                            |                 |                   |                   |    |      |           |             |                                    |  |  |  |
|                                                          | FIL 0.5 SI           |       |                 |              |               |                          | FILL: Gravelly 5 poorly graded,                                    | FILL: Gravelly Silty SAND, medium to coarse, poorly graded, sub-angular sand, fine, poorly graded, sub-angular gravel, non-plastic silt, pale grey-brown, loose, dry. |                 |                   |                   |    |      |           |             | SB10_0.10 - 0.20                   |  |  |  |
|                                                          |                      |       |                 |              |               |                          | FILL: GRAVEL<br>anthropogenic<br>Gravelly SAND<br>sand, fine, poor |                                                                                                                                                                       |                 |                   |                   |    |      |           |             |                                    |  |  |  |
|                                                          |                      |       |                 | -            |               |                          | loose, moist.                                                      | ny gradeu, sab                                                                                                                                                        | Touridou to out | angulai gravol, t | adoc oray, oromi, |    |      |           |             | SB10_0.50 - 0.60                   |  |  |  |
|                                                          |                      |       |                 | 1 <u>.0</u>  |               |                          | Pale grey.                                                         |                                                                                                                                                                       |                 |                   |                   |    |      |           |             | SB10_0.90 - 1.00                   |  |  |  |
|                                                          |                      |       |                 | -            |               |                          |                                                                    |                                                                                                                                                                       |                 |                   |                   |    |      |           |             | SB10_1.20 - 1.30                   |  |  |  |
|                                                          |                      |       |                 |              |               |                          | SB10 terminate<br>Equipment refu                                   |                                                                                                                                                                       |                 |                   |                   |    |      |           |             |                                    |  |  |  |
|                                                          |                      |       |                 | 1 <u>.5</u>  | -             |                          |                                                                    |                                                                                                                                                                       |                 |                   |                   |    |      |           |             |                                    |  |  |  |
|                                                          |                      |       |                 | _            |               |                          |                                                                    |                                                                                                                                                                       |                 |                   |                   |    |      |           |             |                                    |  |  |  |
|                                                          |                      |       |                 | -            | -             |                          |                                                                    |                                                                                                                                                                       |                 |                   |                   |    |      |           |             |                                    |  |  |  |
| 1                                                        |                      |       |                 | 2 <u>.0</u>  | -             |                          |                                                                    |                                                                                                                                                                       |                 |                   |                   |    |      |           |             |                                    |  |  |  |
|                                                          |                      |       |                 | _            | -             |                          |                                                                    |                                                                                                                                                                       |                 |                   |                   |    |      |           |             |                                    |  |  |  |
|                                                          |                      |       |                 | 2 <u>.5</u>  | -             |                          |                                                                    |                                                                                                                                                                       |                 |                   |                   |    |      |           |             |                                    |  |  |  |
|                                                          |                      |       |                 | -            | -             |                          |                                                                    |                                                                                                                                                                       |                 |                   |                   |    |      |           |             |                                    |  |  |  |
| ה סבותיבונס לותחסיונים וווססס בסססיסו ליבותיבונסי ווחססי |                      |       |                 | 3 <u>.0</u>  | _             |                          |                                                                    |                                                                                                                                                                       |                 |                   |                   |    |      |           |             |                                    |  |  |  |

| /       | 1  |
|---------|----|
| sonvers | sa |

| _         | PAGE 1 OF 1       |         |              |             |                          |                                       |                                                                                        |                            |           |                                    |  |  |  |
|-----------|-------------------|---------|--------------|-------------|--------------------------|---------------------------------------|----------------------------------------------------------------------------------------|----------------------------|-----------|------------------------------------|--|--|--|
| Se        | 'n                | ver:    | sa           |             | ь                        | PROJECT NAME   Little Pix             | vor Proliminary Sito Investigation                                                     |                            |           |                                    |  |  |  |
| PROJI     | ECT I             | NUMBE   | ER _N        | 11906       |                          | · · · · · · · · · · · · · · · · · · · | ver Preliminary Site Investigation  Drysdale Road, Little River                        |                            |           |                                    |  |  |  |
| DATE      | STAI              | RTED _  | 10/8/        | 21          | co                       | <b>MPLETED</b> _10/8/21               | LOGGED BY _KC                                                                          | CHECK                      | ED BY     | _VR                                |  |  |  |
|           |                   |         |              |             |                          |                                       |                                                                                        | <b>Zone)</b> 274405 5      | 300006    | 5 55H                              |  |  |  |
|           |                   | Tro     |              |             |                          |                                       | DIMENSIONS 50 mm diameter                                                              |                            |           |                                    |  |  |  |
|           |                   |         |              | s <u> </u>  | Not encount              | tered during drilling                 | CASING LEVEL                                                                           | SURFA                      | CE LEV    | /EL                                |  |  |  |
| GENE      | RAL               | DRILLIN | _            |             |                          |                                       | FIELD MATERIAL DESCRIPTION                                                             |                            |           | SAMPLING                           |  |  |  |
|           | (%)               |         |              | go.         | tion                     |                                       |                                                                                        |                            | Ê         |                                    |  |  |  |
| TH Method | Kecovery<br>Water | Well    | Depth<br>(m) | Graphic Log | Classification<br>Symbol |                                       | aterial Description sticity, fine to medium, poorly graded,                            | Additional<br>Observations | PID (ppm) | Sample ID<br>& Interval<br>(QA/QC) |  |  |  |
|           |                   |         |              |             | G.                       | sub-rounded to sub-angular gravel,    | fine to medium, poorly graded, sub-rounded to rown, firm, moist, dry of plastic limit. |                            |           | SS01_0.00 - 0.10                   |  |  |  |
|           |                   |         |              |             |                          |                                       |                                                                                        |                            |           |                                    |  |  |  |



|                  |       | 1               | )            |             |                          |                                                                                                             |                                                                                            |                            |             | PAGE 1 OF 1           |  |  |
|------------------|-------|-----------------|--------------|-------------|--------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------|-------------|-----------------------|--|--|
| Se               | nv    | or:             | sa           |             | _                        |                                                                                                             |                                                                                            |                            |             |                       |  |  |
| PROJE            | CT N  | UMBE            | :R N         | 11906       |                          | · · · · · · · · · · · · · · · · · · ·                                                                       | ver Preliminary Site Investigation  Drysdale Road, Little River                            |                            |             |                       |  |  |
| DATE :           | STAR  | TED             | 10/8/        | /21         |                          |                                                                                                             | LOGGED BY KC                                                                               | CHECK                      | ED BY       | · VR                  |  |  |
|                  |       |                 |              |             |                          |                                                                                                             | LOCATION (Easting, Northing,                                                               |                            |             |                       |  |  |
| EQUIP            | MENT  | _Tro            | wel          |             |                          |                                                                                                             | DIMENSIONS _ 50 mm diamete                                                                 | r INCLINA                  | ATION       | Vertical              |  |  |
|                  |       |                 |              | <u>1_</u> 2 | Not encoun               | tered during drilling                                                                                       | CASING LEVEL                                                                               | SURFA                      | ACE LEVEL - |                       |  |  |
| GENEF            |       | OTES            |              |             |                          |                                                                                                             | FIELD MATERIAL DESCRIPTION                                                                 |                            |             | SAMPLING              |  |  |
| (8)              | 2     |                 |              | Log         | ation                    |                                                                                                             |                                                                                            |                            | Œ.          | Sample ID             |  |  |
| Core             | Water | Well<br>Details | Depth<br>(m) | Graphic Log | Classification<br>Symbol |                                                                                                             | laterial Description                                                                       | Additional<br>Observations | PID (ppm)   | & Interval<br>(QA/QC) |  |  |
| HE FILL FI SS br |       |                 |              |             |                          | sand, fine to medium, poorly graded brown, loose, dry.  SS02 terminated at 0.10 m bgl Target depth achieved | m, poorly graded, sub-rounded to sub-angular<br>d, sub-rounded to sub-angular gravel, pale |                            |             | SS02_0.00 - 0.10      |  |  |
|                  |       |                 | _            |             |                          |                                                                                                             |                                                                                            |                            |             |                       |  |  |



|        |                      |       | 1               | )            |             |                          |                                                                                                                               |               |                                                                                |                            |             | PAGE 1 OF                          | : 1 |  |
|--------|----------------------|-------|-----------------|--------------|-------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------------------------------------------|----------------------------|-------------|------------------------------------|-----|--|
|        | S⊘I                  | าง    | or:             | sa           |             |                          |                                                                                                                               |               |                                                                                |                            |             |                                    |     |  |
| PR     | OJEC                 | T NI  | JMBE            | R M          | 11906       |                          | ·                                                                                                                             |               | Preliminary Site Investigation<br>ysdale Road, Little River                    |                            |             |                                    | _   |  |
|        |                      |       |                 |              |             |                          |                                                                                                                               |               | LOGGED BY KC                                                                   | CHECK                      | FD BY       | ' VR                               |     |  |
|        |                      |       |                 |              |             |                          | 10/6/21                                                                                                                       |               |                                                                                |                            |             |                                    |     |  |
|        | UIPM                 |       |                 |              |             |                          |                                                                                                                               |               |                                                                                |                            |             |                                    | _   |  |
|        |                      |       |                 |              | s _1        |                          |                                                                                                                               |               | CASING LEVEL                                                                   |                            | ACE LEVEL - |                                    |     |  |
| GE     | NER/                 | AL N  | OTES            | ·            |             |                          |                                                                                                                               |               |                                                                                |                            |             |                                    |     |  |
|        | 1 3                  |       | RILLIN          | i <b>G</b>   | _           | Ē                        |                                                                                                                               | F             | IELD MATERIAL DESCRIPTION                                                      | T                          |             | SAMPLING                           |     |  |
| Method | Core<br>Recovery (%) | Water | Well<br>Details | Depth<br>(m) | Graphic Log | Classification<br>Symbol |                                                                                                                               |               | al Description                                                                 | Additional<br>Observations | PID (ppm)   | Sample ID<br>& Interval<br>(QA/QC) |     |  |
|        |                      |       |                 |              |             | FILL                     | FILL: Gravelly SAND, fine to sand, fine to medium, poorly brown, loose, dry.  SS03 terminated at 0.10 m Target depth achieved | y graded, sub | porly graded, sub-rounded to sub-angular porounded to sub-angular gravel, pale |                            |             | SS03_0.00 - 0.10                   |     |  |
|        |                      |       |                 | _            |             |                          |                                                                                                                               |               |                                                                                |                            |             |                                    |     |  |
|        |                      |       |                 |              |             |                          |                                                                                                                               |               |                                                                                |                            |             |                                    |     |  |

| /       | ) |
|---------|---|
| sonvors | a |

| S      | senversa             |       |                 |              |             |                          |                                                                                                                                                     |                                                                                   |                               |           |      |                                    |  |
|--------|----------------------|-------|-----------------|--------------|-------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------|-----------|------|------------------------------------|--|
| PRO    | OJEC.                | T NU  | JMBE            | R M          | 11906       |                          | PROJECT NAME Little River<br>PROJECT LOCATION 250 D                                                                                                 |                                                                                   |                               |           |      |                                    |  |
|        |                      |       |                 |              |             |                          |                                                                                                                                                     | LOGGED BY KC                                                                      | CHECK                         | ED BY     |      | /R                                 |  |
| COI    | NTRA                 | СТС   | OR _C           | Qest lı      | nfrast      | tructure                 |                                                                                                                                                     | LOCATION (Easting, Northing, 2                                                    | <b>Zone)</b> <u>274341 58</u> | 30014     | 6 55 | 5H                                 |  |
| ΞQι    | JIPMI                | ENT   | Tro             | wel          |             |                          |                                                                                                                                                     | DIMENSIONS 50 mm diameter                                                         | r INCLINA                     | ATION     | I _V | 'ertical                           |  |
| GRO    | OUNE                 | )WA   | TER I           | NOTE         | s _1        | Not encount              | tered during drilling                                                                                                                               | _ CASING LEVEL                                                                    | SURFAC                        | CE LE     | VEL  | - <u>-</u>                         |  |
| GEN    | NERA                 | LN    | OTES            |              |             |                          |                                                                                                                                                     |                                                                                   |                               |           |      |                                    |  |
|        |                      |       | RILLIN          | G            |             |                          | T                                                                                                                                                   |                                                                                   |                               | SAMPLING  |      |                                    |  |
| Method | Core<br>Recovery (%) | Water | Well<br>Details | Depth<br>(m) | Graphic Log | Classification<br>Symbol | Mate                                                                                                                                                | erial Description                                                                 | Additional<br>Observations    | PID (ppm) |      | Sample ID<br>& Interval<br>(QA/QC) |  |
| 2 HE   |                      | A A   |                 |              |             | FILL                     | FILL: Gravelly SAND, fine to medium, sand, fine to medium, poorly graded, s brown, loose, dry.  SS04 terminated at 0.10 m bgl Target depth achieved | poorly graded, sub-rounded to sub-angular sub-rounded to sub-angular gravel, pale |                               |           |      | SS04_0.00 - 0.10                   |  |

| /      | 1  |
|--------|----|
| sonvor | sa |

| PAGE 1 C |                      |       |                 |              |             |                          |                                                                                                                                 |                                                             |                                             |                                    |       | PAGE 1 OF 1      |  |
|----------|----------------------|-------|-----------------|--------------|-------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------|------------------------------------|-------|------------------|--|
| 5        | sonversa             |       |                 |              |             |                          |                                                                                                                                 |                                                             |                                             |                                    |       |                  |  |
|          |                      |       |                 |              |             | P                        | PROJECT NAME Littl                                                                                                              | le River Preliminary Site                                   | e Investigation                             |                                    |       |                  |  |
| PR       | OJEC                 | T N   | JMBE            | <b>R</b> _N  | 11906       | 67 P                     | PROJECT LOCATION                                                                                                                | 250 Drysdale Road, L                                        | ittle River                                 |                                    |       |                  |  |
| DA       | TE ST                | [AR]  | ΓED _           | 10/8/        | 21          | co                       | MPLETED 10/8/21                                                                                                                 | LOGGED BY                                                   | KC                                          | CHECK                              | ED BY | VR               |  |
| СО       | NTR/                 | CTC   | OR _C           | Qest Ir      | nfrast      | tructure                 |                                                                                                                                 | LOCATION (E                                                 | asting, Northing, 2                         | <b>Zone)</b> <u>274208 58</u>      | 30003 | 2 55H            |  |
|          |                      |       | _Tro            |              |             |                          |                                                                                                                                 | DIMENSIONS                                                  |                                             |                                    |       |                  |  |
|          |                      |       |                 |              | <u>1_</u> 2 | Not encount              | tered during drilling                                                                                                           | CASING LEVE                                                 | EL <u>-</u>                                 | SURFA                              | CE LE | VEL              |  |
| GE       | NER/                 |       | OTES            |              |             |                          |                                                                                                                                 |                                                             |                                             |                                    |       |                  |  |
|          | (%                   |       | ORILLIN         | G            | б           | uo                       |                                                                                                                                 |                                                             | SAMPLING                                    |                                    |       |                  |  |
| Method   | Core<br>Recovery (%) | Water | Well<br>Details | Depth<br>(m) | Graphic Log | Classification<br>Symbol |                                                                                                                                 | Additional<br>Observations                                  | PID (ppm)                                   | Sample ID<br>& Interval<br>(QA/QC) |       |                  |  |
| HE       |                      |       |                 |              |             | FILL                     | FILL: Gravelly SAND, fine to sand, fine to medium, poorly brown, loose, dry.  SS05 terminated at 0.10 m b Target depth achieved | medium, poorly graded, sub-rougraded, sub-rounded to sub-an | unded to sub-angular<br>igular gravel, pale |                                    |       | SS05_0.00 - 0.10 |  |
|          |                      |       |                 |              |             |                          |                                                                                                                                 |                                                             |                                             |                                    |       |                  |  |

## Appendix J: Laboratory Analytical Reports

teceived: 10/8/6:50 Carrier: Covrier

| sonve                                        |                                                     | and revon                         |                                        | Chain of Custody Documentation                |                                    |                            |                                                  |                            |                         |              |            |                |                                                                                      |
|----------------------------------------------|-----------------------------------------------------|-----------------------------------|----------------------------------------|-----------------------------------------------|------------------------------------|----------------------------|--------------------------------------------------|----------------------------|-------------------------|--------------|------------|----------------|--------------------------------------------------------------------------------------|
| Senversa Pty<br>www.senversa<br>ABN 89 132 2 | rLtd (mote)                                         | 75°C Seal: Y<br>bricks / NA<br>DV | A ALS                                  | Laboratory:<br>Address:<br>Contact:<br>Phone: | mgt/Eurofins V C<br>Sample Receipt |                            | l Melha                                          | onmental C                 | ivision                 | s Require    | ed         |                | Comments: e.g. Highly confaminated sample; hazardous materiels present; was LORs etc |
| Job Number:                                  |                                                     |                                   | 119967                                 | Purchase Order:                               |                                    |                            | Wor Wor                                          | k Order Flefe              | ence                    |              |            |                |                                                                                      |
| Project Name                                 |                                                     | Pre im nary Site In               | ivestigation - Little River            | Quote No:                                     |                                    |                            | DN E                                             | k Order Flefer<br>M2115    | 727                     |              |            |                |                                                                                      |
| Sampled By:                                  |                                                     | -                                 | ncy/Jamies Horne                       | Turn Around Time:                             | Standar                            | d                          |                                                  |                            | ,, 0,                   |              |            |                |                                                                                      |
|                                              |                                                     |                                   | ida Trickey                            | Page:                                         | 1                                  | of 3                       |                                                  | FILT NAME OF               | la <b>M</b> iliti       |              |            |                |                                                                                      |
| Project Manag                                |                                                     |                                   |                                        | Phone/Mobile:                                 | 0424 172 (                         |                            |                                                  |                            |                         |              |            |                |                                                                                      |
| Email Report                                 | 10:                                                 | Sample Informat                   | y@senversa.com ≥U<br>tion              | Риопелиовие:                                  | Container Info                     |                            |                                                  |                            |                         |              |            | 2              |                                                                                      |
| Lab ID                                       | Sample ID                                           | Matrix *                          | Date                                   | Time                                          | Type / Code                        | Total Bottles              |                                                  |                            | <b>}#</b>               |              |            | 호              |                                                                                      |
|                                              | SB01_0.1-0.2                                        | Soul                              | 10/08/2021                             | АМ                                            | Glass Jar                          | 1                          |                                                  | =1 J=J9=₱1_114.            |                         |              |            |                |                                                                                      |
|                                              | \$B01_0.5-0.6                                       | Soil                              | 10/08/2021                             | AM                                            | Glass Jar                          | 1                          | (elebitorie                                      | 1 + 61-3- <b>664</b> 9 965 | 5                       |              |            |                |                                                                                      |
|                                              | SB01_0 9-1.0                                        | Soil                              | 10/08/2021                             | АМ                                            | Glass Jar                          | 1                          | $\Box$                                           | l <u>.</u>                 |                         |              |            |                |                                                                                      |
|                                              | SB01_1 1-1 2                                        | Sail                              | 10/08/2021                             | AM                                            | Glass Jar                          | 1                          |                                                  |                            |                         |              | ]          |                |                                                                                      |
|                                              | SB02_0.1-0.2                                        | Soil                              | 10/08/2021                             | AM                                            | Glass Jar                          | 1                          |                                                  |                            |                         |              |            |                |                                                                                      |
|                                              | SB02_0.5-0.6                                        | Soil                              | 10/08/2021                             | AM                                            | Glass Jar                          | 1                          |                                                  | <u>r</u>                   |                         |              |            | 1              |                                                                                      |
|                                              | SB02_0.9-1.0                                        | : Soil                            | 10/08/2021                             | AM                                            | Glass Jar                          | 1                          |                                                  |                            |                         | <u> </u>     |            |                |                                                                                      |
|                                              | \$B02_1.9-2.0                                       | Soil                              | 10/08/2021                             | AM                                            | Glass Jar                          | 1                          |                                                  |                            |                         |              | - 117      |                |                                                                                      |
|                                              | SB02_2.9-3.0                                        | Soil                              | 10/08/2021                             | AM                                            | Glass Jar                          | 1                          | 1.                                               |                            | -                       | 1            |            | <del> </del> : | ·                                                                                    |
|                                              | SB03_0.1-0.2                                        | Soil                              | 10/08/2021                             | АМ                                            | Glass Jar                          | 1 1                        |                                                  |                            |                         | 1000         | " · · ·    | 1              |                                                                                      |
|                                              | SB03 0.5-0.8                                        | , Soil                            | 10/08/2021                             | AAA                                           | Glass Jar                          | 1                          | <del>                                     </del> |                            |                         |              | T          |                |                                                                                      |
|                                              | SB03 0.9-1.0                                        | Spil                              | 10/08/2021                             | AM                                            | Glass Jar                          | 1                          |                                                  |                            | 100                     |              |            | 112            |                                                                                      |
|                                              | SB03_1.4-1.5                                        | Soil                              | 10/08/2021                             | AM                                            | Glass Jar                          | 1                          |                                                  |                            |                         |              |            |                |                                                                                      |
|                                              | SB04_0.1-0.2                                        | Soil                              | 10/08/2021                             | AM                                            | Glass Jar                          | 1                          |                                                  |                            |                         |              |            |                |                                                                                      |
|                                              | SB04_0.5-0.6                                        | Soil                              | 10/08/2021                             | AM                                            | Glass Jar                          | 1                          | I   '-                                           |                            |                         |              |            |                |                                                                                      |
|                                              | SB05_0.1-0.2                                        | Soil                              | 10/08/2021                             | AM                                            | Class Jar                          | 1                          | <del>                                     </del> |                            |                         |              |            |                |                                                                                      |
|                                              | SB05_0.5-0.6                                        | Soul                              | 10/08/2021                             | AM                                            | Glass Jar                          | 1                          | <del>                                     </del> |                            |                         |              |            | 1              |                                                                                      |
|                                              | SB05_1.1-1.2                                        | Soil                              | 10/08/2021                             | Abt                                           | Glass Jar                          | 1                          |                                                  | <del></del> †              | İ                       |              | 1          |                |                                                                                      |
|                                              | SB06_0 1-0.2                                        | Soil                              | 10/08/2021                             | AW.                                           | Glass Jar                          | 1                          |                                                  |                            |                         | "            |            |                |                                                                                      |
|                                              | S806_0.5-0.6                                        | Soil                              | 10/08/2021                             | AM.                                           | Glass Jar                          | 1                          |                                                  |                            |                         | <del> </del> |            |                |                                                                                      |
| Total                                        |                                                     | 341                               |                                        |                                               |                                    | 20                         |                                                  |                            |                         | 1            |            |                |                                                                                      |
| Sampler: Latte                               | est that proper field san<br>s were used during the |                                   |                                        | ersa standard proced                          | ures and/or project                | Sampler Name:              |                                                  | ilgnature:                 | '                       | •            |            | Date:          |                                                                                      |
| Relinquished                                 | By:                                                 |                                   |                                        |                                               | Method of Shipment (if ag          | oplicable):                | Received by:                                     |                            |                         |              |            |                |                                                                                      |
| Neme/Signatur                                |                                                     |                                   |                                        | Dale:                                         | Garrier / Reference #              |                            | Name/Signature:                                  |                            |                         |              |            |                | Date.                                                                                |
| Of.                                          |                                                     |                                   |                                        | Time:                                         | Date/Time:                         |                            | Of:                                              | <u> </u>                   |                         |              |            |                | Time:                                                                                |
| Name/Signatur                                | re:                                                 |                                   |                                        | Date:                                         | Carrier / Reference #              |                            | Name/Signature                                   |                            |                         |              |            |                | Date:                                                                                |
| UF                                           |                                                     |                                   |                                        | Time:                                         | Date/Time:                         |                            | Of:                                              |                            |                         |              |            |                | Time:                                                                                |
| Name/Signatur Of:                            | ire;                                                |                                   |                                        | Date:                                         | Carrier / Reference # Date/Time:   |                            | Name/Signature:<br>Of:                           |                            |                         |              |            |                | Time.                                                                                |
|                                              | ater Container Codes: P                             | = Unpreserved Plastic, N          | - Nitric Acid (FNO <sub>3</sub> ) Pres |                                               | o Preserved ORC; SH = Sodium       | Hydroxide (NaO+)/Cadmium ( |                                                  | rdrox de Freservec         | ⊇l <b>as</b> fic; STH : | Sedium ti    | hiosulfate | preserve       | I .                                                                                  |

V = VOA Wall Hydrochloric Acid (HCI) Preserved; VS = VOA Vial Sulphy ric Preserved; VSA = Sulphyric Preserved Amber Glass; H = HCI Preserved Plastic; HS = HCI Preserved Speciation Bottle; SP = Sulphyric Preserved Plastic.

= = Formaldonyde Preserved Glass; Z = Zinc Acotace Preserved Bottlet: E = EDTA Preserved Bottlet; ST = Sterile Bottlet VIA = Unpreserved Amber Glass L=Lugot's looke preserved white plastic cortlet; SW= sulfurio acid preserved wide mouth glass jui

Completed by: Checked by:

#### senversa

#### **Chain of Custody Documentation**

| Senversa Pi              | ly Ltd                                                  |                           |                            | Laboratory:                    | mgt/Eurofins VIC                                                                                 |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |              | Analysis                                         | Requir                                           | ed                                               |              |                                                                                       |
|--------------------------|---------------------------------------------------------|---------------------------|----------------------------|--------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------|---------------------------------------------------------------------------------------|
| www.senver<br>ABN 89 132 |                                                         |                           |                            | Address:<br>Contact:<br>Phone: | Sample Receipt                                                                                   |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  | :            |                                                  |                                                  |                                                  |              | Comments e.g. Highly contaminated sample; hazardous moterials present liade LORs etc. |
| Job Number               | r:                                                      | ħ.                        | A19067                     | Purchase Order:                |                                                                                                  |                                                  | 1                                                |                                                  |                                                  |                                                  |                                                  |                                                  |              |                                                  |                                                  |                                                  |              |                                                                                       |
| Project Nam              | ne:                                                     | Preliminary Site In       | vestigation - Little River | Quote No:                      |                                                                                                  |                                                  | 1                                                |                                                  |                                                  |                                                  | i                                                |                                                  |              |                                                  | -                                                | :                                                |              |                                                                                       |
| Sampled By               | :                                                       |                           | ney/James Home             | Turn Around Time:              | Stenda                                                                                           | and                                              | ]                                                |                                                  |                                                  |                                                  |                                                  |                                                  |              |                                                  |                                                  |                                                  |              |                                                                                       |
| Project Man              |                                                         |                           | nda Trickey                | Page:                          | 2                                                                                                | of 3                                             | 1                                                |                                                  |                                                  |                                                  | 1                                                |                                                  |              |                                                  |                                                  |                                                  |              |                                                                                       |
| Email Repor              |                                                         |                           | v@senversz.com.au          | Phone/Mobile:                  | 0424 172                                                                                         |                                                  | 1                                                |                                                  |                                                  |                                                  |                                                  |                                                  |              |                                                  |                                                  |                                                  |              |                                                                                       |
| Email Repor              | (10.                                                    | Sample Informati          |                            | Filoneracone:                  | Container inf                                                                                    |                                                  | 1                                                |                                                  |                                                  |                                                  | 1                                                |                                                  |              |                                                  |                                                  |                                                  | ا م          |                                                                                       |
| Lab ID                   | Sample ID                                               | Matrix *                  | Date                       | Time                           | Type / Code                                                                                      | Total Bottles                                    | 1                                                |                                                  |                                                  |                                                  |                                                  |                                                  |              |                                                  |                                                  |                                                  | HOLD         |                                                                                       |
|                          | SB06_1 0-1 1                                            | Soif                      | 10/08/2021                 | AM                             | Glass Jar                                                                                        | 1                                                |                                                  |                                                  |                                                  |                                                  |                                                  |                                                  |              |                                                  | †···                                             |                                                  |              |                                                                                       |
|                          | SB07_0 1-0.2                                            | Soil                      | 10/08/2021                 | AM                             | Glass Jar                                                                                        | 1                                                | 1                                                | <u>-</u>                                         |                                                  | T                                                |                                                  |                                                  |              |                                                  |                                                  |                                                  |              | 1                                                                                     |
|                          | SB07_0.5-0.6                                            | Şpil                      | 10/08/2021                 | AM                             | Glass Jar                                                                                        | 1                                                |                                                  | •                                                |                                                  |                                                  | _                                                |                                                  |              |                                                  |                                                  | +                                                |              |                                                                                       |
|                          | SB07_0.9-1.0                                            | Spil                      | 10/08/2021                 | AM                             | Glass Jar                                                                                        | 1                                                |                                                  | :                                                | <del> </del>                                     | <u>†                                      </u>   |                                                  |                                                  |              |                                                  |                                                  | •                                                |              |                                                                                       |
|                          | SB07_1.5-1.5                                            | Soil                      | 10/08/2021                 | AM                             | Glass Jar                                                                                        | 1                                                |                                                  | <del>  -</del>                                   | <del>                                     </del> | †                                                | 1                                                | 1                                                |              |                                                  |                                                  | :                                                |              |                                                                                       |
|                          | SB08_0.1-0.2                                            | Spil                      | 10/08/2021                 | AM                             | Glass Jar                                                                                        | 1                                                |                                                  | <del>                                     </del> |                                                  |                                                  |                                                  | <del> </del>                                     |              |                                                  |                                                  |                                                  | -            |                                                                                       |
|                          | SB08 0.5-0 6                                            | Spill                     | 10/08/2021                 | AM                             | Glass Jar                                                                                        | 1                                                |                                                  |                                                  | 1                                                |                                                  | <del> </del> -                                   | 1                                                |              | 1                                                |                                                  | <del>                                     </del> |              |                                                                                       |
|                          | SB08_1.0-1.1                                            | Sod                       | 10/08/2021                 | ΔМ                             | Glass Jer                                                                                        | 1                                                |                                                  | †                                                |                                                  |                                                  | 1                                                | +                                                | <b>—</b>     |                                                  |                                                  | <del>                                     </del> |              |                                                                                       |
|                          | \$B08_1 4-1.5                                           | Spil                      | 10/08/2021                 | АМ                             | Glass Jar                                                                                        | 1                                                |                                                  | 1                                                |                                                  | <del> </del>                                     | +                                                |                                                  | <del>-</del> | +                                                |                                                  |                                                  |              |                                                                                       |
|                          | SB09 0 0-0 1                                            | Soil                      | 10/08/2021                 | AM                             | Glass Jar                                                                                        | 1                                                |                                                  | <del>  -</del> -                                 | 1                                                | <del>                                     </del> | +                                                |                                                  |              |                                                  |                                                  | +                                                |              |                                                                                       |
|                          | SB10 0 1-0,2                                            | Soil                      | 10/08/2021                 | АМ                             | Glass Jar                                                                                        | 1                                                |                                                  |                                                  |                                                  | <del>                                     </del> | <del>                                     </del> | +                                                |              | t                                                |                                                  |                                                  |              |                                                                                       |
|                          | SB10 0.5-0-6                                            | Soll                      | 10/08/2021                 | AM                             | Glass Jar                                                                                        | 1                                                |                                                  | 1                                                | <del> </del>                                     | <del>                                     </del> | +                                                | <del>                                     </del> | -            | +                                                |                                                  | +                                                | $\vdash$     | · · · · · · · · · · · · · · · · · · ·                                                 |
|                          | SB10_0.9-1.0                                            | Soil                      | 10/08/2021                 | AM                             | Class Jar                                                                                        | 1                                                | <del>                                     </del> | +                                                | +                                                | <del>                                     </del> | 1                                                |                                                  |              | <del>                                     </del> |                                                  |                                                  | <del> </del> | <del> </del>                                                                          |
|                          | SB10_1.2 1.3                                            | Soil                      | 10/08/2021                 | AM                             | Glass Jar                                                                                        | 1                                                | <del>                                     </del> | ${}^{+-}$                                        |                                                  | <del></del>                                      | +                                                |                                                  |              | <del> </del>                                     |                                                  |                                                  | ·            | <del></del>                                                                           |
|                          | SS01                                                    | Soil                      | 10/08/2021                 | AM                             | Glass Jar                                                                                        | + ;                                              |                                                  | +                                                |                                                  | 1                                                | $\vdash$                                         | +                                                |              | +                                                |                                                  |                                                  |              |                                                                                       |
|                          | 5502                                                    | Soi!                      | 10/08/2021                 | AM                             | Class Jar                                                                                        | · ·                                              |                                                  | -                                                |                                                  |                                                  | <del>  -</del>                                   | +                                                |              | <del>                                     </del> |                                                  |                                                  |              |                                                                                       |
|                          | SS03                                                    | \$on                      | 10/08/2021                 | AM                             | Glass Jar                                                                                        | 1 1                                              | <del> </del>                                     | +                                                |                                                  | +                                                |                                                  | +                                                |              | <del>                                     </del> |                                                  | <del> </del> -                                   |              |                                                                                       |
|                          | SS04                                                    | Soil                      | 10/08/2021                 | AM                             | Glass Jar                                                                                        | <del>                                     </del> | <del>                                     </del> | +                                                | _                                                | +                                                |                                                  | +                                                |              | ┼                                                |                                                  | _                                                |              |                                                                                       |
|                          | 8805                                                    | Soil                      | 10/08/2021                 | AM                             | Glass Jar                                                                                        | 1 1                                              | <del> </del>                                     | +                                                | 1                                                |                                                  | <del>                                     </del> |                                                  |              | <del>                                     </del> |                                                  | <del>                                     </del> |              | <del></del>                                                                           |
|                          | QC01                                                    | Soil                      | 10/08/2021                 | AVI                            | Glass Jar                                                                                        | 1 1                                              | <del> </del>                                     | †                                                | +                                                | <del>                                     </del> | <del>                                     </del> |                                                  |              |                                                  |                                                  |                                                  |              |                                                                                       |
| Total                    |                                                         |                           | 10.04.2421                 |                                | 01000 040                                                                                        | 20                                               |                                                  | + -                                              |                                                  | 1.                                               | <del>  -</del>                                   |                                                  |              |                                                  | <del>                                     </del> |                                                  |              |                                                                                       |
|                          |                                                         |                           |                            |                                |                                                                                                  |                                                  |                                                  | <u> </u>                                         |                                                  |                                                  | _                                                |                                                  |              |                                                  |                                                  |                                                  |              |                                                                                       |
|                          | test that proper field sam<br>is were used during the o |                           |                            | ersa standard proced           | ures and/or project                                                                              | Sampler Name:                                    |                                                  |                                                  |                                                  |                                                  | Signa                                            | ture:                                            |              |                                                  |                                                  |                                                  | Date:        |                                                                                       |
| Relinquished             | d By:                                                   |                           | <u> </u>                   |                                | Method of Shipment (if a                                                                         | pplicable):                                      |                                                  |                                                  | Receiv                                           | ed by:                                           |                                                  |                                                  |              |                                                  |                                                  |                                                  |              |                                                                                       |
| Name/Signati             | ure:                                                    |                           |                            | Date:                          | Carner / Reference #:                                                                            |                                                  |                                                  |                                                  | _                                                | Signatur                                         | e-                                               |                                                  |              |                                                  |                                                  |                                                  | - "          | Date:                                                                                 |
| Of.                      |                                                         |                           |                            | "me:                           | Date/Time:                                                                                       |                                                  |                                                  |                                                  | Of:                                              |                                                  |                                                  |                                                  |              |                                                  |                                                  |                                                  |              | Time:                                                                                 |
| Name/Şignatı<br>Of:      | pire.                                                   |                           |                            | Date:<br>Time:                 | Carrier / Reference #:                                                                           | <del></del> -                                    |                                                  |                                                  | Name/                                            | Signatur                                         | e                                                |                                                  |              |                                                  |                                                  |                                                  |              | Date:                                                                                 |
| ∪ı.<br>Name/Signa(ı      | ine.                                                    | <u> </u>                  |                            | Date:                          | Date/Time:                                                                                       |                                                  |                                                  |                                                  | O1:                                              |                                                  |                                                  |                                                  |              |                                                  |                                                  |                                                  | _            | Time.                                                                                 |
| Of;                      | ···•                                                    |                           |                            | Time:                          | Carrier / Roference #:<br>Date/Time.                                                             |                                                  |                                                  |                                                  | rvame/:                                          | Signatur                                         | <u>e.                                    </u>    |                                                  |              |                                                  |                                                  |                                                  |              | Date                                                                                  |
|                          | = VOA Vial Hydechione Add /                             | HCi ) Preserved: IVS = VI | OA Via Sulpburk Preservi   | ea: VSA = Sulphuric Pres       | : Preserved ORC; SH = Sodium<br>erved Amber Glass; H = HCl Pr<br>Sterile Bottle; UA = Unpreserve | eserved Plastic: HS = i                          | hC Peac                                          | acued So                                         | aziadian F                                       | Routte: SE                                       | Cules                                            | urto Dages.                                      | SOM DISS     | odie.                                            |                                                  |                                                  | preserved    | d plashe:                                                                             |

#### sonversa

#### **Chain of Custody Documentation**

|                          | orsa                                                      |                       |                                       |                         |                          |               |          |         |                    |        |               |     |          |                                                  |        |              |          |                                                       |
|--------------------------|-----------------------------------------------------------|-----------------------|---------------------------------------|-------------------------|--------------------------|---------------|----------|---------|--------------------|--------|---------------|-----|----------|--------------------------------------------------|--------|--------------|----------|-------------------------------------------------------|
| Senversa P               | -                                                         |                       |                                       | Laboratory:<br>Address: | mgt/Eurofins VIC         |               | <u> </u> |         |                    |        |               |     |          | Analysis<br>I                                    | Reguir | ed           | 1        | Comments e.g. Highly contaminated                     |
| www.senver<br>ABN 89 132 |                                                           |                       |                                       | Contact:<br>Phone:      | Sample Receipt           |               |          |         |                    |        |               |     |          |                                                  |        |              |          | sample; hazardous materials present; b'a<br>LORs etc. |
| Job Numbe                | er:                                                       | ľ                     | 119067                                | Purchase Order:         |                          |               |          |         |                    |        |               |     |          |                                                  |        |              |          |                                                       |
| Project Nan              | ne:                                                       | Preliminary Site In   | vestigation - Little River            | Quote No:               |                          |               | <b>!</b> |         |                    |        |               |     | ĺ        | l                                                |        |              |          |                                                       |
| Sampled By               | y:                                                        | Kelley Cher           | ney/James Home                        | Turn Around Time:       | : Standa                 | rd            |          |         |                    |        |               |     |          | İ                                                |        |              |          |                                                       |
| Project Man              | nager:                                                    |                       | ida Trickey                           | Page:                   | 3                        | of 3          |          |         |                    |        |               |     |          |                                                  |        |              |          |                                                       |
| Email Repo               | ort To:                                                   | Judinda, tricke       | y@senversa.com au                     | Phone/Mobile:           | 0424 172                 | 065           | 1 1      |         | - 1                |        |               |     |          |                                                  | ]      | 1            |          |                                                       |
|                          |                                                           | Sample Informat       |                                       |                         | Container Info           |               |          |         |                    |        |               |     |          |                                                  | Ì      |              | пон      |                                                       |
| Lab ID                   | Sample ID                                                 | Matrix *              | Date                                  | Time                    | Type / Code              | Total Bottles |          | $\perp$ |                    |        |               |     |          |                                                  |        |              | 유        |                                                       |
|                          | 0002                                                      | Sail                  | 10/08/2021                            | AM                      | Glass Jar                | 1             |          |         |                    |        |               |     |          |                                                  |        |              |          |                                                       |
|                          | QC03                                                      | Soul                  | 10/08/2021                            | AM                      | Glass Jar                | 1             |          |         |                    |        |               |     | <u> </u> |                                                  |        |              |          |                                                       |
|                          | QC04                                                      | Sail                  | 10/08/2021                            | AM                      | Class Jar                |               |          |         |                    |        |               |     |          |                                                  |        |              |          |                                                       |
|                          | QC05                                                      | Sail                  | 10/08/2021                            | AM                      | Metals Water Jav         | 2             |          |         |                    |        |               |     |          |                                                  |        |              |          |                                                       |
|                          |                                                           |                       |                                       |                         |                          |               |          |         |                    |        |               |     |          |                                                  |        |              |          |                                                       |
|                          |                                                           |                       |                                       |                         |                          |               |          | ľ       |                    | [      | [             |     |          | i                                                |        |              | ļ        |                                                       |
|                          |                                                           |                       |                                       |                         |                          |               |          |         |                    |        |               |     |          |                                                  |        |              |          |                                                       |
|                          |                                                           |                       |                                       |                         |                          |               |          |         |                    |        |               |     |          |                                                  |        |              |          |                                                       |
|                          |                                                           | ·                     |                                       |                         |                          |               |          |         | I                  |        |               |     |          |                                                  |        |              |          |                                                       |
|                          |                                                           | L                     |                                       |                         |                          |               |          |         |                    |        |               |     |          |                                                  |        | 1            |          |                                                       |
|                          |                                                           |                       |                                       |                         |                          |               |          |         |                    |        |               |     |          |                                                  |        |              |          |                                                       |
| · T                      |                                                           |                       |                                       |                         |                          |               |          |         |                    |        |               |     |          |                                                  |        |              |          |                                                       |
|                          | · <b>= ·</b> ·                                            |                       |                                       |                         |                          |               |          |         | -                  | f      |               |     |          |                                                  |        | 1            |          |                                                       |
|                          |                                                           |                       |                                       |                         |                          |               |          |         |                    |        |               |     |          |                                                  |        |              |          |                                                       |
|                          |                                                           | <u> </u>              |                                       |                         |                          |               |          |         |                    | $\top$ |               |     |          |                                                  |        |              |          |                                                       |
|                          |                                                           |                       |                                       |                         |                          |               |          |         |                    |        |               |     |          |                                                  |        |              | <u> </u> |                                                       |
|                          |                                                           |                       |                                       |                         |                          |               |          |         |                    |        |               |     |          |                                                  |        |              |          |                                                       |
|                          |                                                           |                       | · · · · · · · · · · · · · · · · · · · |                         |                          |               |          |         | <u> </u>           |        |               |     |          |                                                  |        |              |          |                                                       |
|                          |                                                           |                       |                                       |                         | · ···                    |               |          |         | $\neg +$           | $\top$ | $\overline{}$ |     |          | <del>                                     </del> |        |              |          |                                                       |
|                          |                                                           |                       |                                       |                         | · · ·                    |               |          |         |                    | _      |               |     |          |                                                  |        |              |          |                                                       |
| Total                    | <del></del>                                               | •                     |                                       |                         | <b>.</b>                 | 5             |          | _       |                    | _      |               |     |          |                                                  |        | <del> </del> |          |                                                       |
|                          | Host that proper field som                                | eliee essendures le s | and the second                        |                         |                          | <u> </u>      |          |         |                    |        |               |     |          |                                                  |        |              |          | J                                                     |
|                          | ittest that proper field sam<br>ns were used during the c |                       |                                       | ersa standaro procei    | oures anotor project     | Sampler Name: |          |         |                    | S      | ignatu        | re: |          |                                                  |        |              | Date:    |                                                       |
| Relinguishe              | d By:                                                     |                       |                                       |                         | Method of Shipment (If a | oniicable):   |          | 1R      | egeived b          | u·     |               |     |          |                                                  |        |              |          |                                                       |
| Name/Signat              |                                                           |                       |                                       | Date:                   | Carrier / Reference #:   |               |          |         | ame/Signa          |        |               |     |          |                                                  |        |              |          | Date:                                                 |
| Of:                      |                                                           |                       |                                       | Time:                   | Date/Time:               |               |          |         | f:                 |        |               |     |          |                                                  |        |              |          | Time:                                                 |
| Name/Signat              | ture:                                                     |                       |                                       | Date:                   | Carrier / Reference #:   |               |          | V       | am <b>u</b> /Signa | llure: |               |     |          |                                                  |        |              |          | Date:                                                 |
| Of:                      |                                                           |                       |                                       | Time.                   | Date/Time:               |               |          |         | f:                 |        |               |     |          |                                                  |        |              |          | Time:                                                 |
| Name/Signat              | lure:                                                     |                       |                                       | Date:                   | Carrier / Reference #:   |               |          | νν      | ame/Signa          | fure:  |               |     |          |                                                  |        |              |          | Oate:                                                 |
| Of                       |                                                           |                       |                                       | Time:                   | Date/Time:               |               |          | - 0     | F-                 |        |               |     |          |                                                  |        |              |          | Time:                                                 |

#### Ranil Weerakkody

From: Lucinda Trickey < Lucinda.Trickey@senversa.com.au>

Sent: Wednesday, 11 August 2021 11:11 AM

To: Peter Ravlic
Cc: Kelley Cheney

Subject: [EXTERNAL] - RE: Sample COC Senversa (10/8)

Attachments: M19067\_COC\_Senversa.pdf

**CAUTION:** This email originated from outside of ALS. Do not click links or open attachments unless you recognize the sender and are sure content is relevant to you.

Hi Peter,

Please find attached the COC for samples sent to the lab yesterday

Cheers Lucy

senversa

Lucinda Trickey Associate Environmental Engineer

M: +61 424 172 065

Lucinda Trickey is on Teams

www.senverse.com.au

Level 6, 15 William St, Melbourne, VIC, 3000, Australia

From: Kelley Cheney <kelley.cheney@senversa.com.au>

Sent: Tuesday, 10 August 2021 4:56 PM
To: Peter Raylic <peter.raylic@alsglobal.com>

Cc: Lucinda Trickey < Lucinda. Trickey@senversa.com.au>

Subject: Sample COC Senversa (10/8)

Hey Peter,

Just sending through a prelim COC for the samples picked up today. A more detailed COC will be sent tomorrow morning

Kind regards,



Kelley Cheney Graduate Environmental Engineer

M: +61 401 539 712

E: kelley.cheney@senversa.com.au

Level 6, 15 William St, Melbourne VIC 6000 www.senversa.com.au

#### **Chain of Custody Documentation**

| 20114                                  | O130                                                         |                    |                           |                                      |                          |               |                                        |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |           |                 |             |                                                                                       |
|----------------------------------------|--------------------------------------------------------------|--------------------|---------------------------|--------------------------------------|--------------------------|---------------|----------------------------------------|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|-----------|-----------------|-------------|---------------------------------------------------------------------------------------|
| Senversa P<br>www.senver<br>ABN 89 132 | sa,com.au                                                    |                    |                           | Laboratory: Address: Centact. Phone: | ALS VIC<br>Sample Recept |               | Mærganese,                             |        |         | nitrate, total kjeldahl<br>raedive phosphorus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          |          | Analysis | Require   | ed              |             | Commants: e.g. Highly contaminated sample hazardous materials present; trace LORs are |
| Job Numbe                              | r:                                                           | N                  | M19087                    | Purchase Order:                      |                          |               | ]<br>[ag                               |        |         | F Sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of the sector Property of t |          |          |          |          |           |                 |             |                                                                                       |
| Project Nan                            | nė:                                                          | Preiminary Site In | vestigation - Little Rive | er Quote No:                         | Senversa                 |               | ] <del>-</del>                         |        |         | F. BOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |          |          |           |                 |             |                                                                                       |
| Sampled By                             | v:                                                           |                    | nay/James Horne           | Turn Around Time:                    | Standa                   | -d            | Couper.                                |        |         | olfret<br>rang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          |          |          |           |                 |             |                                                                                       |
| Project Mar                            |                                                              |                    | rda Tinckey               | Page:                                | 1                        | a[3           | Boron, Cadmiurt, C<br>Molybdenum, Zinc |        |         | nithte, n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          |          |          |           |                 |             |                                                                                       |
| Email Repo                             |                                                              |                    | y@senversa.com au         | Phone/Mobile:                        | 0424 172                 |               | J wash                                 |        | Cations | is and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |          |          |           |                 |             |                                                                                       |
| Ellia I Repo                           |                                                              | Sample Informat    |                           | T TOTAL TOTAL                        | Container Info           |               | a S. Š.                                | ځ ا    | 8       | Ammonia,<br>nimgen, tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |          |          |           |                 | OLO<br>IOLO |                                                                                       |
| Lab (D                                 | \$ample ID                                                   | Matrix *           | Date                      | Time                                 | Type / Code              | Total Bottles | Boy<br>Mol                             | Sulfer | vien    | E id                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | <u> </u> |          |          |           |                 | 2           |                                                                                       |
| 1                                      | S301_0.1-0.2                                                 | Scil               | 10/08/2021                | AM                                   | Glass Jan                | 1             | X                                      |        | Х       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u> |          | <u> </u> | <u> </u> |           | <u> </u>        |             |                                                                                       |
| 2                                      | \$ <b>301 0</b> .5-0.6                                       | Scil               | 10/68/2021                | AM                                   | Glass Jar                | 1             | Х                                      | Х      | Х       | ΤX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |          |          |           |                 |             |                                                                                       |
| 3                                      | S301_0.9-1.0                                                 | Scil               | 10/68/2021                | AM                                   | Glass Jan                | 1             | Х                                      | Х      | Х       | T X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          |          |          | [         |                 |             |                                                                                       |
| 4                                      | \$301_1.1-1.2                                                | Soil               | 10/68/2021                | АМ                                   | Glass Jar                | 1             | Х                                      | X      | X       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |          |          |           |                 |             |                                                                                       |
| 5                                      | \$302_0.1-0.2                                                | Scil               | 10/08/2021                | AM                                   | Class Jar                | 1             | X                                      | Х      | Х       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |          |          |           |                 |             |                                                                                       |
| 6                                      | 830%_0.5-0.6                                                 | Seil               | 10/08/2021                | АМ                                   | Glass Jar                | 1             | X                                      | Х      | Х       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Γ        |          |          |           |                 |             |                                                                                       |
| ▎▗▃▔▕                                  | \$302_0.9-1.0                                                | Scil               | 10/08/2021                | AM                                   | Gless Jar                | í             | X                                      | Х      | Х       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |          |          |           |                 |             |                                                                                       |
| 8                                      | \$302_1.9-2.0                                                | Stil               | 10/08/2021                | AM                                   | Glass Jar                | ş             | X                                      | Х      | Х       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | Τ"       |          | T        |           |                 |             |                                                                                       |
| 9                                      | \$302_2.9-3.0                                                | Seil               | 10/08/2021                | AM                                   | Glass Jan                | ſ             |                                        |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |           |                 |             |                                                                                       |
| 10                                     | SB03_0.1-3.2                                                 | Scil               | 10/08/2021                | AM                                   | Glass Jar                | 1             | X                                      | Х      | Х       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          | Ī        |          |           | Ī               |             |                                                                                       |
| ()                                     | S803_0.5-3.6                                                 | Scil               | 10/08/2021                | AM                                   | Glass Jar                | 1             | X                                      | Х      | Х       | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |          |          |           |                 |             |                                                                                       |
| 12                                     | 3803_0.9-1.0                                                 | Scil               | 19/08/2021                | AM                                   | Glass Jar                | 1             | X                                      | X      | X       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |          |          |           |                 |             |                                                                                       |
| 13                                     | \$803_1.4-1.5                                                | Scil               | 10/08/2021                | AM                                   | Gloss Jor                | 1             | X                                      | Х      | Х       | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7        |          | 1        |          |           |                 |             |                                                                                       |
| 14                                     | SB04_0.1-0.2                                                 | Seil               | 19/08/2021                | AM                                   | Class Jar                | 1             | X                                      | Х      | Х       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |          |          |           |                 |             |                                                                                       |
| ી હૈ                                   | \$804_0.5-0.6                                                | Scil               | 10/08/2021                | AM                                   | Glass Jar                | <b>⊣</b> ·₁   | X                                      | X      | X       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |          | 1        |           |                 |             |                                                                                       |
| 16                                     | \$805 0.1-0.2                                                | Soil               | 19/08/2021                | AM                                   | Gless Jar                | 1             | X                                      | X      | X       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |          | 1        | <u> </u>  | †··· <b>-</b> - | <u> </u>    |                                                                                       |
| 17                                     | \$805_0.5-0.6                                                | Sail               | 19/08/2021                | AM                                   | Glass Jar                | 1             | X                                      | Х      | Х       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>-</b> | T        |          | 1        |           |                 |             |                                                                                       |
| 16                                     | SB05_1 1-1.2                                                 | Seil               | 10/08/2021                | AM                                   | Glass Jar                | 1             | X                                      | Х      | X       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          |          |          | · · · · - | ·               |             |                                                                                       |
| 170                                    | SB06_0 1-0.2                                                 | Soil               | 10/08/2021                | AM                                   | Gloss Jar                | ┦ ,           | X                                      | Х      | Х       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>-</b> | -        |          |          |           |                 |             | •                                                                                     |
| 20                                     | SB06_0.5-0.8                                                 | Soll               | 10/08/2021                | AM                                   | Glass Jar                | 1             | X                                      | Х      | Х       | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 1        |          |          |           |                 |             |                                                                                       |
| Total                                  | · .                                                          |                    |                           |                                      |                          | 20            | <u> </u>                               | Ţ      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |           |                 |             |                                                                                       |
|                                        | attest that proper field sam,<br>his were used during the co |                    |                           | ersa standard procedu                | res and/or project       | Sampler Name: |                                        |        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signal   | lure:    |          |          |           |                 | Date:       |                                                                                       |
| Relinquisho                            | ud Bv:                                                       |                    |                           |                                      | Method of Shipment (if a | policable):   |                                        |        | Receiv  | ved by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |          |          |           |                 |             |                                                                                       |
| Namo/Signa                             | <u> </u>                                                     |                    |                           | Date:                                | Carrier / Reference #:   | aparoduirj.   |                                        |        | _       | (Signalur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | re:      |          |          |          |           |                 |             | Date:                                                                                 |
| O <sup>+</sup> :                       |                                                              |                    |                           | Time:                                | Date/Time:               |               |                                        |        | Of:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |           |                 |             | Time:                                                                                 |
| Name/Signa                             | ture:                                                        |                    |                           | Date:                                | Camer / Reference #:     |               |                                        |        | Name/   | 'Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | re·      |          |          |          |           |                 |             | Date:                                                                                 |
| Of:                                    |                                                              |                    |                           | Time:                                | Date/Time.               |               |                                        |        | Of.     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |          |          |           |                 |             | Time.                                                                                 |
| Name/Signa                             | ture:                                                        |                    |                           | Date;                                | Camer / Reference #;     |               |                                        |        | Name/   | (Signatur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ng:      |          |          |          |           |                 |             | Date:                                                                                 |

Water Container Codes: P = Unpreserved Plastic; N = Nitric Acid (HNO<sub>3</sub>) Preserved Plastic; ORC = Nitric Preserved DAC(; SH = Sodium Hydroxide (N-OH))X-admum (ZH) Preserved: S = Sodium Hydroxide Preserved Plastic; STH = Sedium in oxulfate preserved plastic; V = VOA Viel Hydroxide (HO) Preserved, VS = VOA Viel Syptimic Preserved VSA = Sulphurc Preserved Amost Class; H = HCI Preserved Plastic; HS = HCI Preserved Speciation Boltic | SP = Sulphurc Preserved Plastic; P = Formaldehyde Preserved Class; Z = Zinc Acatate Preserved Bodie; E = EDTA Preserved Bottle; ST = Sterie Bottle; UA = Unpreserved Amber Class; L = Lugol's and no preserved while plastic bottle; SW= sulfunction of preserved with the plastic bottles with the plastic bottles with the plastic bottles with the plastic bottles with the plastic bottles with the plastic bottles with the plastic bottles with the plastic bottles with the plantic bottles with the plant

Campleted by.

#### senversa

#### **Chain of Custody Documentation**

Namo/Signature:

| 50111                                        |                                                              |                     |                            | -1                                   |                                       |                                       |                              |          |          |                                                       |        |          | Auniver- | Parede   | nd.        |          | <u> </u>                                                                                    |
|----------------------------------------------|--------------------------------------------------------------|---------------------|----------------------------|--------------------------------------|---------------------------------------|---------------------------------------|------------------------------|----------|----------|-------------------------------------------------------|--------|----------|----------|----------|------------|----------|---------------------------------------------------------------------------------------------|
| 5enversa F<br><u>Www.serwe</u><br>ABN 89 132 | rsa.cont au                                                  |                     |                            | Laboratory: Address: Contact: Phone: | mgVEurofins VIS Sample Rossipl        |                                       | mese,                        |          | <u> </u> | dahl                                                  |        |          | Analysis | Require  | ia         |          | Ogniments: e.g. Highly conformation sample<br>hazardous mare falls present; trace LORA etc. |
| Job Numbe                                    | er;                                                          | R/I                 | 119067                     | Purchase Order:                      | · · · · · · · · · · · · · · · · · · · |                                       | Manganese                    |          |          | le, mirata, total kjeldahl<br>and reactive phosphorus |        |          |          |          |            |          |                                                                                             |
| Project Na                                   | me;                                                          | Preliminary Site Im | vestigation - Little River | Quote No:                            |                                       |                                       |                              |          |          | 12 m                                                  |        |          |          |          |            |          |                                                                                             |
| Sampled B                                    | y:                                                           | Xelley Chen         | ey/James Home              | Turn Around Time:                    | Slandard                              | 1                                     | Copper,                      |          |          | retut<br>Treax                                        |        |          |          |          |            |          |                                                                                             |
| Project Ma                                   | nager:                                                       | Lucin               | ola Trickey                | Page:                                | 2                                     | of 3                                  | num. (                       |          | ր        | 취원                                                    |        |          | 1        |          |            | 1        |                                                                                             |
| Email Repo                                   |                                                              | lucinda trickey     | /@se.rversa.com.au         | Phone/Mobile:                        | C424 172 G                            | 65                                    | Boron, Cadmit<br>Molypcenum. |          | Cations  | oia, nifr'i<br>n. Iolal a                             |        |          |          |          |            |          |                                                                                             |
|                                              |                                                              | Sample Informat     |                            |                                      | Container Infor                       | mation                                | 8 5<br>2 6                   | 트        | <u>e</u> | Ammonia, I                                            |        |          |          |          |            | HOLD     |                                                                                             |
| Lab ID                                       | Sample ID                                                    | Matrix *            | Date                       | Time                                 | Type / Code                           | Tolaj Bottjes                         |                              | Suffer   | Major    |                                                       |        |          |          |          | Ь—         | 유        |                                                                                             |
| 21                                           | SB06_1,0-1,1                                                 | Scil                | 10/08/2021                 | AM                                   | Glass Jar                             | 1                                     | X                            | X        | X        | <u> </u>                                              |        | <u> </u> |          |          | <b>↓</b>   |          | _                                                                                           |
| 22                                           | SB07_0 1-3.2                                                 | Sail                | 13/08/2021                 | AM                                   | Glass Jar                             | 1                                     | X                            | Х        | X_       | X                                                     |        |          |          | <u> </u> | ļ <u> </u> |          |                                                                                             |
| 23                                           | SB07_0.5-0.6                                                 | Sell                | 10/08/20/21                | AM                                   | Glass Jar                             | 1                                     | _                            | _        | X        | X                                                     |        |          |          |          | igspace    | <u> </u> |                                                                                             |
| 724                                          | SB07_0.9-1.0                                                 | Scil                | 10/08/2021                 | AM                                   | Cless Jer                             | 1                                     | ×                            | Х        | X        | X                                                     |        |          |          |          | <u> </u>   | ↓        |                                                                                             |
| 25                                           | SB07_1 5-1.5                                                 | Soil                | 10/08/2021                 | AM                                   | Glass Jar                             | 1                                     | X                            |          | Х        | X                                                     |        |          |          |          | <u> </u>   | <u> </u> |                                                                                             |
| 26                                           | SB08_0 1-0.2                                                 | Soil                | 19/08/2021                 | AM                                   | Glass Jar                             | 1                                     | X                            |          | Х        | X                                                     |        |          |          |          |            |          |                                                                                             |
| 727                                          | SB08_0.5-0.6                                                 | Soil                | 19/08/2021                 | АМ                                   | Glass Jar                             | 1                                     |                              | X        | X        | X                                                     |        |          |          | <u> </u> | ļ          | ļ        |                                                                                             |
| Z∕€                                          | SB08_1 0-1.1                                                 | Soli                | 10/08/2021                 | AM                                   | Glesa Jer                             | 11                                    | Х                            | Х        | X        | X                                                     |        |          |          |          |            |          |                                                                                             |
| 29                                           | 5808_ <b>1 4-1.</b> 5                                        | Soll                | 10/08/2021                 | AM                                   | Glass Jar                             | 1                                     |                              |          |          |                                                       | J      |          | 1        |          |            | х        |                                                                                             |
| ے3                                           | SR09_0 0-0 1                                                 | Sall                | 10/08/2021                 | AM                                   | Ciesa Jar                             | 11                                    | Х                            | Х        | Х        | X                                                     |        |          | <u> </u> |          |            |          |                                                                                             |
| -31                                          | SB10_0 1-0.2                                                 | Soil                | 19/08/2021                 | AM                                   | Ğlasş Jar                             | 1                                     | Х                            | X        | Х        | X                                                     |        |          |          |          |            |          |                                                                                             |
| 32                                           | SB10_0 5-0.6                                                 | Sail                | 10/08/2021                 | AM                                   | Glass Jar                             | 1                                     | X                            | X        | Х        | X                                                     |        |          |          |          |            |          |                                                                                             |
| 33                                           | SB1C_0 9-1.0                                                 | Şoil                | 10/08/2021                 | AM                                   | Glass Jar                             | 1                                     | Х                            | Х        | Х        | Х                                                     |        |          |          |          |            |          |                                                                                             |
| 34                                           | SB10_1 2-1.3                                                 | Soil                | 19/08/2021                 | AM                                   | Class Jar                             | 1                                     | ĺ                            |          |          |                                                       |        |          |          |          |            | ×        | ]                                                                                           |
| 35                                           | 8801                                                         | Sail                | 10/08/2021                 | AM                                   | Glass Jar                             | ]                                     | Х                            | Х        | Х        | X                                                     |        |          |          | ĺ        |            |          | 1                                                                                           |
| 36                                           | <b>SSC2</b>                                                  | Soll                | 10/08/2021                 | <u>A</u> M                           | Gless Jar                             | 1                                     | X                            | X        | X        | X                                                     | ] .    |          |          |          |            |          |                                                                                             |
| 34                                           | <b>\$</b> 503                                                | Soil                | 10/08/2021                 | AM                                   | Glass Jar                             | 1                                     | Х                            | Х        | Х        | X                                                     |        |          |          |          |            |          |                                                                                             |
| .38                                          | <b>S</b> SC4                                                 | Sail                | 10/08/2021                 | AM                                   | Glass Jar                             | 1                                     | X                            | X        | Х        | Х                                                     |        |          |          |          |            |          |                                                                                             |
| 39                                           | \$805                                                        | Soil                | 10/08/2021                 | AM                                   | Glass Jar                             | 1                                     | Х                            | Х        | Х        | Х                                                     |        |          |          |          |            |          |                                                                                             |
| 40                                           | QC01                                                         | Soil                | 10/08/2021                 | AM                                   | Glass Jar                             | 1                                     | Х                            | Х        | Х        | X                                                     |        |          |          |          |            |          |                                                                                             |
| Total                                        |                                                              |                     |                            | ·                                    |                                       | 20                                    |                              | <u> </u> |          |                                                       |        |          |          |          |            |          |                                                                                             |
|                                              | attest that proper field samp<br>one were used during the co |                     |                            | ersa standard procedur               | es and/or project                     | Sampler Name:                         |                              | 7        |          |                                                       | Signat | ure:     |          |          |            | Date:    |                                                                                             |
| Relinquish                                   | ed By:                                                       |                     |                            |                                      | Method of Shipment (if ap             | plicable):                            |                              |          | Receiv   | ved by:                                               |        |          |          |          |            |          |                                                                                             |
| Name/Signs                                   |                                                              |                     |                            | Date:                                | Camer / Reference #:                  | · · · · · · · · · · · · · · · · · · · |                              |          | _        | /Signatur                                             | е:     |          |          |          |            |          | Date.                                                                                       |
| Of:                                          |                                                              |                     |                            | Time:                                | Date/Time:                            |                                       |                              |          | Of:      |                                                       |        |          |          |          |            |          | Time:                                                                                       |
| Name/Signa                                   | ature:                                                       |                     |                            | Date:                                | Carrier / Reference में:              |                                       |                              |          | _        | /Signatur                                             | e:     |          |          |          |            |          | Date:                                                                                       |
| Ot:                                          |                                                              |                     |                            | Time:                                | Date/Time.                            |                                       |                              |          | C1.      |                                                       |        |          |          |          |            |          | Time:                                                                                       |

Time: Date/Time: Date/

F = Formal Certydia Prassarved Glass; Z = Zinc Adatate Prasserved Bottle; E = ED1A Prosorved Bottle; 61 = Stort a Bottle; UA = Unprosorved Amber Glass; L=Lugot's oddine preserved while plastic bottle; SW= sulfuric acid preserved wide mouth glass jar

Carner / Reference #:

Date:

Name/Signature:

Date.

Checked by.

#### **Chain of Custody Documentation**

| Senversa Pr                   |                                                           |                                               |                               | Laboratory:                                       | mgt/Eurofins VIC                                                                                     |                                                  |                                     |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                | Analy | sis Req       | uired |                |                                                                                  |
|-------------------------------|-----------------------------------------------------------|-----------------------------------------------|-------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------|-----------|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|-------|---------------|-------|----------------|----------------------------------------------------------------------------------|
| www.senver<br>ABN 89 132      |                                                           |                                               |                               | Address:<br>Contact:<br>Phone:                    | Samp e Receipt                                                                                       |                                                  | 63 <u>9</u> ,                       |           |                           | ahl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                |       |               |       |                | Commanta, e.g. Highly contaminated sam<br>hazardous malenals present, trace LORs |
| Job Numbe                     | <i>t</i> :                                                | ſ                                             | 19067                         | Purchase Order:                                   |                                                                                                      |                                                  | Manganese                           |           |                           | Ammonia, nibile, n trate, total kjeldahl<br>nikogen, total and reastive phosphorus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                |       |               |       |                |                                                                                  |
| Project Nan                   |                                                           | Preliminary Sile In                           | vestigation - Little River    | Quote No:                                         |                                                                                                      |                                                  | Per. M                              |           |                           | e, tola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                |       |               | į     |                |                                                                                  |
| Sampled By                    | r:                                                        | Kelley Chen                                   | cy/James Horne                | Turn Around Time:                                 | Standard                                                                                             | I                                                | Copper,                             |           |                           | F 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | -              |       |               |       | i              |                                                                                  |
| Project Man                   | nager:                                                    | Luch                                          | oa Trickey                    | Page:                                             | 3                                                                                                    | of 3                                             | ium,                                |           |                           | al de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la de la del |               |                |       |               |       |                |                                                                                  |
| Email Repo                    |                                                           |                                               | @senversa.com.au              | Phone/Mobile:                                     | 0424 172 0                                                                                           |                                                  | Boron, Cadmium,<br>Molyudenum, Zing |           | Major Calons              | a, nil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                | i     |               |       |                |                                                                                  |
|                               |                                                           | Sample Informat                               |                               | 1                                                 | Container Infor                                                                                      |                                                  | 2.5                                 | 5         | l ö                       | moni<br>iden                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |                |       |               |       | ; <u>9</u>     | •                                                                                |
| Lab ID                        | Sample ID                                                 | Matrix *                                      | Date                          | Time                                              | Type / Code                                                                                          | Total Bottles                                    | Med.                                | Sulfur    |                           | a min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |                |       | i             |       | 1900           | i                                                                                |
| <del>&gt;</del>               | QC02                                                      | Soil                                          | 10/08/2021                    | AM                                                | Glass Jar                                                                                            | 1                                                | X                                   | X         | ]X                        | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                |       |               |       |                | Forward to Eurofins                                                              |
| ui 💮                          | QC03                                                      | Sol                                           | 10/08/2021                    | AM                                                | Glass Jar                                                                                            | 1                                                | Х                                   | Х         | Х                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                |       |               |       |                |                                                                                  |
| _>                            | QC04                                                      | Sol                                           | 10/08/2021                    | Ам                                                | Glass Jar                                                                                            | 1                                                | X                                   | X         | Х                         | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                |       |               |       | T              | Forward to Eurofins                                                              |
| 42                            | QC05                                                      | Sol                                           | 10/08/2021                    | AM                                                | Motals Water Jan                                                                                     | 2                                                |                                     |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |       |               |       |                |                                                                                  |
| [                             |                                                           |                                               |                               |                                                   |                                                                                                      |                                                  |                                     |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |       |               |       |                |                                                                                  |
|                               |                                                           |                                               |                               |                                                   |                                                                                                      |                                                  |                                     |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |       |               |       |                |                                                                                  |
|                               |                                                           |                                               |                               |                                                   |                                                                                                      |                                                  |                                     |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |       |               |       | 1              |                                                                                  |
|                               |                                                           |                                               |                               |                                                   |                                                                                                      |                                                  |                                     |           |                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |                |       |               |       |                |                                                                                  |
|                               |                                                           |                                               |                               |                                                   |                                                                                                      |                                                  |                                     |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |       |               |       |                |                                                                                  |
|                               | <u> </u>                                                  | 1                                             |                               |                                                   |                                                                                                      |                                                  |                                     |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |       |               | 1 .   | +              |                                                                                  |
|                               |                                                           |                                               |                               |                                                   | ,                                                                                                    |                                                  |                                     |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |       |               |       |                |                                                                                  |
|                               |                                                           |                                               |                               |                                                   |                                                                                                      |                                                  |                                     |           | <u> </u>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                | +     |               |       | t              |                                                                                  |
|                               |                                                           |                                               |                               |                                                   |                                                                                                      | <del> </del>                                     |                                     |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |       | 1             |       |                |                                                                                  |
| •                             |                                                           |                                               |                               |                                                   |                                                                                                      |                                                  |                                     | -         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$      |                |       |               |       |                |                                                                                  |
|                               | -                                                         | -                                             |                               |                                                   | <del></del>                                                                                          | <del>                                     </del> |                                     | ŀ         | !                         | ٠.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·             |                | +     | _             |       | <del> </del>   |                                                                                  |
| <del></del> -                 |                                                           |                                               | •                             |                                                   |                                                                                                      | 1                                                |                                     |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | } <del></del> |                |       |               |       |                |                                                                                  |
|                               |                                                           |                                               |                               | <del></del>                                       |                                                                                                      | <del> </del>                                     |                                     |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | _              | +-    | <del></del>   |       |                |                                                                                  |
|                               |                                                           |                                               |                               |                                                   |                                                                                                      | <del> </del> ··                                  |                                     | _         |                           | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | -+             | ∤     | 1             | i     | 1              |                                                                                  |
|                               |                                                           | -                                             |                               |                                                   | <del> </del>                                                                                         |                                                  |                                     |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <del>- [</del> | _     |               | -     | <del> </del>   |                                                                                  |
|                               |                                                           | <b>—</b>                                      |                               | <del> </del>                                      | <del> </del>                                                                                         |                                                  | <b></b> -                           | <u> </u>  |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\vdash$      | -+             | +     | <del></del> - |       | <del> </del> - |                                                                                  |
|                               |                                                           |                                               |                               | l. <u></u>                                        |                                                                                                      | -                                                |                                     | -         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>       |                | +     | -             |       | 1              |                                                                                  |
| Total                         |                                                           |                                               |                               |                                                   |                                                                                                      | 5                                                |                                     |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L             |                |       |               |       | <u> </u>       |                                                                                  |
| Sampler: Lat<br>specification | test that proper field samp<br>is were used during the co | ling procedures in a<br>liection of these sam | cordance with Senver<br>ples: | sa standard procedur                              | as and/or project                                                                                    | Sampler Name:                                    |                                     |           |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Signatur      | Đ:             |       |               |       | Date:          |                                                                                  |
| Relinquished                  | d By:                                                     |                                               |                               | ·                                                 | Method of Shipment (if app                                                                           | ricable):                                        |                                     |           | Receive                   | ed by:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                |       |               |       |                | ·                                                                                |
| Name/Signal                   | ure:                                                      |                                               |                               | Date:                                             | Carrier / Reference #:                                                                               |                                                  |                                     |           | _                         | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :             |                |       |               |       |                | Date:                                                                            |
| Of:                           |                                                           |                                               |                               | Time;                                             | Date/Time:                                                                                           |                                                  |                                     |           | Of.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                |       |               |       |                | Time:                                                                            |
| Name/Signat<br>Of:            | rue.                                                      |                                               |                               | Date<br>Time:                                     | Carrier / Reference #;<br>:Date/Time.                                                                |                                                  |                                     |           |                           | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | :             |                |       |               |       |                | Date:                                                                            |
| <i>ਾ।:</i><br>Vame/Signat     | I.G.                                                      |                                               |                               | Date                                              | Carder / Reference #                                                                                 | <del></del>                                      |                                     |           | D1:                       | Marrahi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |                |       |               |       |                | Time:                                                                            |
| varnerungnan<br>Of:           |                                                           |                                               |                               | Tmu                                               | Date/Tima:                                                                                           |                                                  |                                     |           | Namers:<br>Of:            | Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |                |       |               |       |                | Date: Time.                                                                      |
| V                             | " = VOA Wat Hydochfore Acid (f                            | (CI) Preserved, VS 1 VC                       | A Vial Sulpremb Preserve      | vec Plasto, ORC - Ninc<br>s; VSA - Suphure Preser | Preserved ORC: SH = Scrium Hy<br>ved Ambor Glass. H = HC, Prese<br>torile Boitle; UA = Unpreserved A | rved Diaslic: 1 S = 1t                           | St Presei                           | vort Spec | redi; S = 5<br>uatron Bot | tte: SP =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | S. Inhuoe I   | Presented P    | est o |               |       | reserved p     |                                                                                  |



### **SAMPLE RECEIPT NOTIFICATION (SRN)**

Work Order : EM2115737

Client : SENVERSA PTY LTD Laboratory : Environmental Division Melbourne

Contact : LUCINDA TRICKEY Contact : Peter Ravlic

Address : Level 6, 15 William St Address : 4 Westall Rd Springvale VIC Australia

3171

Telephone : +61 03 9606 0070 Telephone : +6138549 9645
Facsimile : +61 03 9606 0074 Facsimile : +61-3-8549 9626

Project : M19067 Page : 1 of 3

Melbourne VICTORIA, AUSTRALIA

Order number : ---- Quote number : EM2020SENVER0016 (EN/103/20

(primary work only))

C-O-C number : ---- QC Level : NEPM 2013 B3 & ALS QC Standard

Site : ----

Sampler : James Horne, Kelley Cheney

**Dates** 

Date

**Delivery Details** 

 Mode of Delivery
 : Carrier
 Security Seal
 : Not Available

 No. of coolers/boxes
 : 2
 Temperature
 : 7.5°C - Ice present

Receipt Detail : No. of samples received / analysed : 42 / 38

#### General Comments

This report contains the following information:

- Sample Container(s)/Preservation Non-Compliances
- Summary of Sample(s) and Requested Analysis
- Proactive Holding Time Report
- Requested Deliverables
- Please direct any queries related to sample condition / numbering / breakages to Client Services.
- Sample Disposal Aqueous (3 weeks), Solid (2 months) from receipt of samples.
- Analytical work for this work order will be conducted at ALS Springvale and ALS Brisbane.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Preliminary results will be available on the scheduled reporting date listed in this report. However the final report with total sulfur analysis will be complete on 24/08/2021.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Issue Date : 12-Aug-2021

Page

2 of 3 EM2115737 Amendment 0 Work Order Client : SENVERSA PTY LTD



#### Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

#### Summary of Sample(s) and Requested Analysis

| process necessa<br>tasks. Packages<br>as the determina<br>tasks, that are inclu-<br>lif no sampling<br>default 00:00 on<br>is provided, the<br>laboratory and<br>component<br>Matrix: <b>SOIL</b> | ry for the executi may contain ad ation of moisture uded in the package. time is provided, the date of sampling sampling date will displayed in bra | ditional analyses, such content and preparation the sampling time will g. If no sampling date II be assumed by the ckets without a time | On Hold) SOIL<br>No analysis requested | SOIL - EA055-103<br>Moisture Content | SOIL - ED042T<br>Sulfur - Total as S (high temperature fumace | SOIL - EG005T (solids)<br>Total Metals by ICP-AES | SOIL - NT-1S<br>Major Cations (Ca. Mg, Na. K) | SOIL - NT-8AS<br>NH3, NO2, NO3, NOX, TKN, TN, TP, RP |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------|---------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|------------------------------------------------------|
| Laboratory sample ID                                                                                                                                                                              | Sampling date /<br>time                                                                                                                             | Sample 15                                                                                                                               | On H<br>No an                          | SOIL<br>Moist                        | SOIL -<br>Sulfur                                              | SOIL<br>Total                                     | SOIL<br>Majo                                  | SOIL<br>NH3,                                         |
| EM2115737-001                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB01_0.1-0.2                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-002                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB01_0.5-0.6                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-003                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB01_0.9-1.0                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-004                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB01_1.1-1.2                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-005                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB02_0.1-0.2                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-006                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB02_0.5-0.6                                                                                                                            |                                        | 1                                    | 1                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-007                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB02_0.9-1.0                                                                                                                            |                                        | ✓                                    | 1                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-008                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB02_1.9-2.0                                                                                                                            |                                        | ✓                                    | 1                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-009                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB02_2.9-3.0                                                                                                                            | ✓                                      |                                      |                                                               |                                                   |                                               |                                                      |
| EM2115737-010                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB03_0.1-0.2                                                                                                                            |                                        | ✓                                    | 1                                                             | ✓                                                 | ✓                                             | 1                                                    |
| EM2115737-011                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB03_0.5-0.6                                                                                                                            |                                        | ✓                                    | 1                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-012                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB03_0.9-1.0                                                                                                                            |                                        | ✓                                    | 1                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-013                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB03_1.4-2.0                                                                                                                            |                                        | ✓                                    | 1                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-014                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB04_0.1-0.2                                                                                                                            |                                        | ✓                                    | 1                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-015                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB04_0.5-0.6                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-016                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB05_0.1-0.2                                                                                                                            |                                        | ✓                                    | 1                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-017                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB05_0.5-0.6                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | 1                                                    |
| EM2115737-018                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB05_1.1-1.2                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-019                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB06_0.1-0.2                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | 1                                                    |
| EM2115737-020                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB06_0.5-0.6                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-021                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB06_1.0-1.1                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-022                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB07_0.1-0.2                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-023                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB07_0.5-0.6                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | 1                                                    |
| EM2115737-024                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB07_0.9-1.0                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | 1                                                    |
| EM2115737-025                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB07_1.5-1.5                                                                                                                            |                                        | 1                                    | ✓                                                             | 1                                                 | ✓                                             | ✓                                                    |
| EM2115737-026                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB08_0.1-0.2                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-027                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB08_0.5-0.6                                                                                                                            |                                        | 1                                    | ✓                                                             | 1                                                 | ✓                                             | ✓                                                    |
| EM2115737-028                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB08_1.0-1.1                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-029                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB08_1.4-1.5                                                                                                                            | ✓                                      |                                      |                                                               |                                                   |                                               |                                                      |
| EM2115737-030                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB09_0.0-0.1                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-031                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB10_0.1-0.2                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-032                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB10_0.5-0.6                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-033                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB10_0.9-1.0                                                                                                                            |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-034                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SB10_1.2-1.3                                                                                                                            | ✓                                      |                                      |                                                               |                                                   |                                               |                                                      |
| EM2115737-035                                                                                                                                                                                     | 10-Aug-2021 00:00                                                                                                                                   | SS01                                                                                                                                    |                                        | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |

Issue Date : 12-Aug-2021

Page

3 of 3 EM2115737 Amendment 0 Work Order Client : SENVERSA PTY LTD



|               |                   |      | (On Hold) SOIL<br>No analysis requested | SOIL - EA055-103<br>Moisture Content | SOIL - ED042T<br>Sulfur - Total as S (high temperature fumace | SOIL - EG005T (solids)<br>Total Metals by ICP-AES | SOIL - NT-1S<br>Major Cations (Ca, Mg, Na, K) | SOIL - NT-8AS<br>NH3, NO2, NO3, NOX, TKN, TN, TP, RP |
|---------------|-------------------|------|-----------------------------------------|--------------------------------------|---------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------|------------------------------------------------------|
| EM2115737-036 | 10-Aug-2021 00:00 | SS02 |                                         | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-037 | 10-Aug-2021 00:00 | SS03 |                                         | ✓                                    | 1                                                             | 1                                                 | 1                                             | ✓                                                    |
| EM2115737-038 | 10-Aug-2021 00:00 | SS04 |                                         | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-039 | 10-Aug-2021 00:00 | SS05 |                                         | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-040 | 10-Aug-2021 00:00 | QC01 |                                         | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |
| EM2115737-041 | 10-Aug-2021 00:00 | QC03 |                                         | ✓                                    | ✓                                                             | ✓                                                 | ✓                                             | ✓                                                    |

| Matrix: WATER     |                         |           | (On Hold) WATER<br>No analysis requested |
|-------------------|-------------------------|-----------|------------------------------------------|
| Laboratory sample | Sampling date /<br>time | Sample ID | (On Hold<br>No analy                     |
| EM2115737-042     | 10-Aug-2021 00:00       | QC05      | ✓                                        |

#### Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

#### Requested Deliverables

#### LUCINDA TRICKEY

| - *AU Certificate of Analysis - NATA (COA)                     | Email | lucinda.trickey@senversa.com.au |
|----------------------------------------------------------------|-------|---------------------------------|
| - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI)    | Email | lucinda.trickey@senversa.com.au |
| - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC)            | Email | lucinda.trickey@senversa.com.au |
| - A4 - AU Sample Receipt Notification - Environmental HT (SRN) | Email | lucinda.trickey@senversa.com.au |
| - A4 - AU Tax Invoice (INV)                                    | Email | lucinda.trickey@senversa.com.au |
| - Chain of Custody (CoC) (COC)                                 | Email | lucinda.trickey@senversa.com.au |
| - EDI Format - ENMRG (ENMRG)                                   | Email | lucinda.trickey@senversa.com.au |
| - EDI Format - ESDAT (ESDAT)                                   | Email | lucinda.trickey@senversa.com.au |
| SUPPLIER ACCOUNTS                                              |       |                                 |
| A 4 A 1 1 T                                                    |       |                                 |

- A4 - AU Tax Invoice (INV) Email supplieraccounts@senversa.com.a



#### **CERTIFICATE OF ANALYSIS**

Work Order : EM2115737

: SENVERSA PTY LTD

Contact : LUCINDA TRICKEY

Address : Level 6, 15 William St

Melbourne VICTORIA, AUSTRALIA 3000

Telephone : +61 03 9606 0070

Project : M19067

Order number : ----

Client

C-O-C number · ----

Sampler : James Horne, Kelley Cheney

Site : ---

Quote number : EN/103/20 (primary work only)

No. of samples received : 42
No. of samples analysed : 38

Page : 1 of 11

Laboratory : Environmental Division Melbourne

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9645

Date Samples Received : 10-Aug-2021 16:50

Date Analysis Commenced : 13-Aug-2021

Issue Date : 24-Aug-2021 09:51



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

#### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Senior Inorganic Chemist Melbourne Inorganics, Springvale, VIC
Jarwis Nheu Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC
Nikki Stepniewski Senior Inorganic Instrument Chemist Melbourne Inorganics, Springvale, VIC
Satishkumar Trivedi Senior Acid Sulfate Soil Chemist Brisbane Acid Sulphate Soils, Stafford, QLD

Page : 2 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD

Project : M19067

# ALS

#### **General Comments**

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

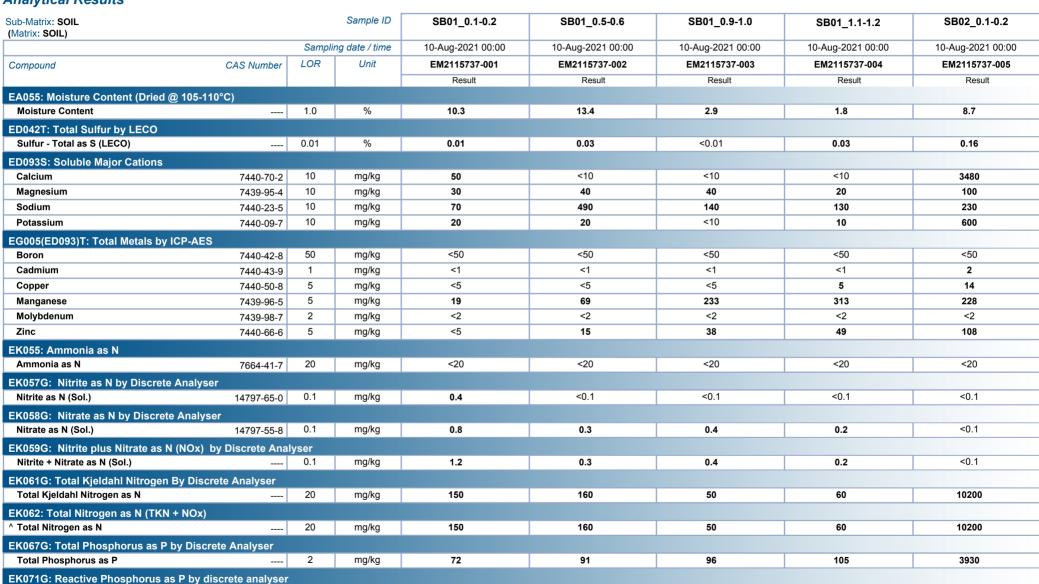
- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.
- ED093S: EM2115737 #32, Poor duplicate precision for Calcium due to sample heterogeneity. Confirmed by re-extraction and re-analysis.

Page : 3 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD

Project : M19067

Reactive Phosphorus as P


14265-44-2

0.1

mg/kg

0.9

#### **Analytical Results**



0.2

0.2

< 0.1

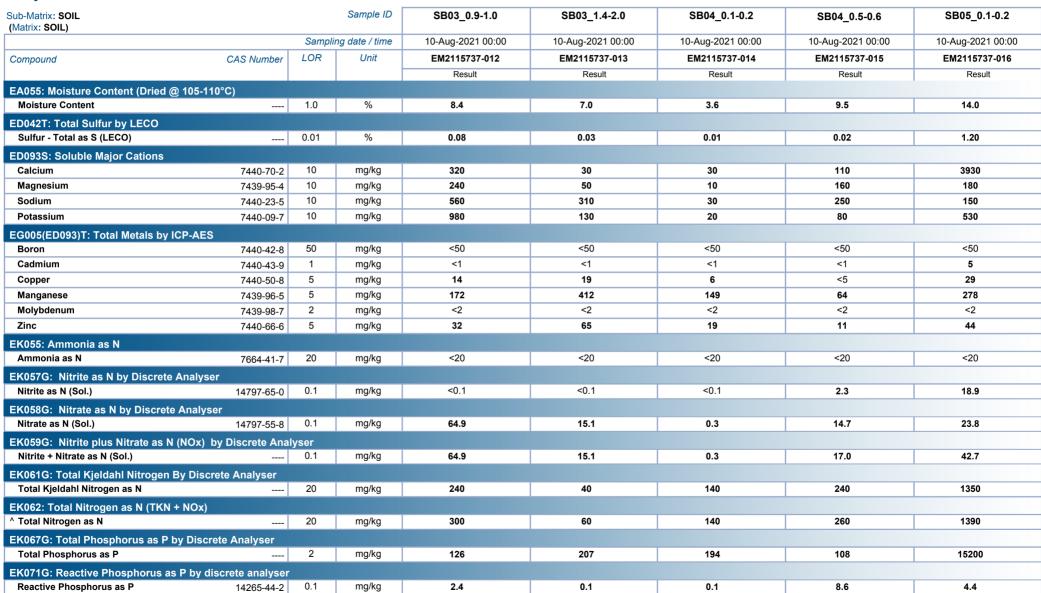
4.6



Page : 4 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD

Project : M19067




| Sub-Matrix: SOIL<br>(Matrix: SOIL)   |                      |        | Sample ID      | SB02_0.5-0.6      | SB02_0.9-1.0      | SB02_1.9-2.0      | SB03_0.1-0.2      | SB03_0.5-0.6      |
|--------------------------------------|----------------------|--------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| ·                                    |                      | Sampli | ng date / time | 10-Aug-2021 00:00 | 10-Aug-2021 00:00 | 10-Aug-2021 00:00 | 10-Aug-2021 00:00 | 10-Aug-2021 00:00 |
| Compound                             | CAS Number           | LOR    | Unit           | EM2115737-006     | EM2115737-007     | EM2115737-008     | EM2115737-010     | EM2115737-011     |
| •                                    |                      |        |                | Result            | Result            | Result            | Result            | Result            |
| EA055: Moisture Content (Dried @     | 105-110°C)           |        |                |                   |                   |                   |                   |                   |
| Moisture Content                     |                      | 1.0    | %              | 15.2              | 3.8               | 3.0               | 5.7               | 15.7              |
| ED042T: Total Sulfur by LECO         |                      |        |                |                   |                   |                   |                   |                   |
| Sulfur - Total as S (LECO)           |                      | 0.01   | %              | 8.26              | 0.03              | 0.01              | 0.03              | 0.32              |
| ED093S: Soluble Major Cations        |                      |        |                |                   |                   |                   |                   |                   |
| Calcium                              | 7440-70-2            | 10     | mg/kg          | 3500              | 70                | 20                | 20                | 3660              |
| Magnesium                            | 7439-95-4            | 10     | mg/kg          | 230               | 50                | 50                | 10                | 690               |
| Sodium                               | 7440-23-5            | 10     | mg/kg          | 500               | 180               | 210               | 110               | 930               |
| Potassium                            | 7440-09-7            | 10     | mg/kg          | 1730              | 210               | 30                | 160               | 2330              |
| EG005(ED093)T: Total Metals by ICF   | P-AES                |        |                |                   |                   |                   |                   |                   |
| Boron                                | 7440-42-8            | 50     | mg/kg          | <50               | <50               | <50               | <50               | <50               |
| Cadmium                              | 7440-43-9            | 1      | mg/kg          | 8                 | <1                | <1                | <1                | 1                 |
| Copper                               | 7440-50-8            | 5      | mg/kg          | 6                 | <5                | 6                 | <5                | 19                |
| Manganese                            | 7439-96-5            | 5      | mg/kg          | 193               | 22                | 259               | 110               | 146               |
| Molybdenum                           | 7439-98-7            | 2      | mg/kg          | <2                | <2                | <2                | <2                | <2                |
| Zinc                                 | 7440-66-6            | 5      | mg/kg          | 54                | <5                | 41                | 8                 | 122               |
| EK055: Ammonia as N                  |                      |        |                |                   |                   |                   |                   |                   |
| Ammonia as N                         | 7664-41-7            | 20     | mg/kg          | <20               | <20               | <20               | <20               | <20               |
| EK057G: Nitrite as N by Discrete A   | nalyser              |        |                |                   |                   |                   |                   |                   |
| Nitrite as N (Sol.)                  | 14797-65-0           | 0.1    | mg/kg          | <0.1              | <0.1              | 0.2               | 0.1               | 0.3               |
| EK058G: Nitrate as N by Discrete A   | nalvser              |        |                |                   |                   |                   |                   |                   |
| Nitrate as N (Sol.)                  | 14797-55-8           | 0.1    | mg/kg          | 3.0               | 17.4              | 1.0               | 12.2              | 389               |
| EK059G: Nitrite plus Nitrate as N (N | NOx) by Discrete Ana | lvser  |                |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N (Sol.)        |                      | 0.1    | mg/kg          | 3.0               | 17.4              | 1.2               | 12.3              | 389               |
| EK061G: Total Kjeldahl Nitrogen By   | Discrete Analyser    |        |                |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N         |                      | 20     | mg/kg          | 330               | 220               | 60                | 410               | 480               |
| EK062: Total Nitrogen as N (TKN + I  | NOx)                 |        |                |                   |                   |                   |                   |                   |
| ^ Total Nitrogen as N                |                      | 20     | mg/kg          | 330               | 240               | 60                | 420               | 870               |
| EK067G: Total Phosphorus as P by     |                      |        |                |                   |                   |                   |                   |                   |
| Total Phosphorus as P                |                      | 2      | mg/kg          | 3830              | 128               | 92                | 166               | 109               |
| EK071G: Reactive Phosphorus as P     | by discrete analyser |        | <u> </u>       |                   |                   |                   |                   |                   |
| Reactive Phosphorus as P             | 14265-44-2           | 0.1    | mg/kg          | 0.2               | 1.8               | 0.4               | 16.8              | 3.5               |

Page : 5 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD

Project : M19067





Page : 6 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD

Project : M19067



| Sub-Matrix: SOIL<br>(Matrix: SOIL)  |                       |        | Sample ID       | SB05_0.5-0.6      | SB05_1.1-1.2      | SB06_0.1-0.2      | SB06_0.5-0.6      | SB06_1.0-1.1      |
|-------------------------------------|-----------------------|--------|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| ,                                   |                       | Sampli | ing date / time | 10-Aug-2021 00:00 | 10-Aug-2021 00:00 | 10-Aug-2021 00:00 | 10-Aug-2021 00:00 | 10-Aug-2021 00:00 |
| Compound                            | CAS Number            | LOR    | Unit            | EM2115737-017     | EM2115737-018     | EM2115737-019     | EM2115737-020     | EM2115737-021     |
| •                                   |                       |        |                 | Result            | Result            | Result            | Result            | Result            |
| EA055: Moisture Content (Dried @    | 105-110°C)            |        |                 |                   |                   |                   |                   |                   |
| Moisture Content                    |                       | 1.0    | %               | 17.1              | 7.4               | 8.8               | 15.8              | 35.5              |
| ED042T: Total Sulfur by LECO        |                       |        |                 |                   |                   |                   |                   |                   |
| Sulfur - Total as S (LECO)          |                       | 0.01   | %               | 5.13              | 0.03              | 0.04              | 0.30              | 0.93              |
| ED093S: Soluble Major Cations       |                       |        |                 |                   |                   |                   |                   |                   |
| Calcium                             | 7440-70-2             | 10     | mg/kg           | 3910              | 40                | 160               | 3360              | 5950              |
| Magnesium                           | 7439-95-4             | 10     | mg/kg           | 340               | 50                | 20                | 540               | 1940              |
| Sodium                              | 7440-23-5             | 10     | mg/kg           | 850               | 300               | 60                | 440               | 2390              |
| Potassium                           | 7440-09-7             | 10     | mg/kg           | 1220              | 330               | 160               | 1280              | 6820              |
| EG005(ED093)T: Total Metals by IC   | P-AES                 |        |                 |                   |                   |                   |                   |                   |
| Boron                               | 7440-42-8             | 50     | mg/kg           | <50               | <50               | <50               | <50               | <50               |
| Cadmium                             | 7440-43-9             | 1      | mg/kg           | 4                 | <1                | <1                | <1                | <1                |
| Copper                              | 7440-50-8             | 5      | mg/kg           | <5                | <5                | <5                | 24                | 79                |
| Manganese                           | 7439-96-5             | 5      | mg/kg           | 108               | 19                | 174               | 233               | 178               |
| Molybdenum                          | 7439-98-7             | 2      | mg/kg           | <2                | <2                | <2                | <2                | <2                |
| Zinc                                | 7440-66-6             | 5      | mg/kg           | 25                | 9                 | 22                | 151               | 190               |
| EK055: Ammonia as N                 |                       |        |                 |                   |                   |                   |                   |                   |
| Ammonia as N                        | 7664-41-7             | 20     | mg/kg           | <20               | <20               | <20               | 20                | 240               |
| EK057G: Nitrite as N by Discrete A  | Analyser              |        |                 |                   |                   |                   |                   |                   |
| Nitrite as N (Sol.)                 | 14797-65-0            | 0.1    | mg/kg           | 0.2               | <0.1              | 0.4               | 3.2               | 0.3               |
| EK058G: Nitrate as N by Discrete    | Analyser              |        |                 |                   |                   |                   |                   |                   |
| Nitrate as N (Sol.)                 | 14797-55-8            | 0.1    | mg/kg           | <0.1              | 1.7               | 9.8               | 467               | 1860              |
| EK059G: Nitrite plus Nitrate as N ( | (NOx) by Discrete Ana | lvser  |                 |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N (Sol.)       |                       | 0.1    | mg/kg           | 0.2               | 1.7               | 10.2              | 470               | 1860              |
| EK061G: Total Kjeldahl Nitrogen B   | ly Discrete Analyser  |        |                 |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N        |                       | 20     | mg/kg           | 180               | 110               | 1160              | 15500             | 17400             |
| EK062: Total Nitrogen as N (TKN +   | · NOv)                |        | 0 0             |                   |                   |                   |                   |                   |
| ^ Total Nitrogen as N               |                       | 20     | mg/kg           | 180               | 110               | 1170              | 16000             | 19300             |
| EK067G: Total Phosphorus as P b     |                       |        |                 |                   |                   |                   |                   | 1.2000            |
| Total Phosphorus as P               | y Discrete Analyser   | 2      | mg/kg           | 9180              | 1520              | 2200              | 3280              | 3510              |
|                                     |                       |        | mg/ng           | 3100              | 1020              | 2200              | 3200              | 3310              |
| EK071G: Reactive Phosphorus as      |                       | 0.1    | ma/ka           | 7.1               | F4.0              | 10.0              | 0.2               | 74.7              |
| Reactive Phosphorus as P            | 14265-44-2            | U. I   | mg/kg           | 7.1               | 54.0              | 18.8              | 9.3               | 74.7              |

Page : 7 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD

Project : M19067

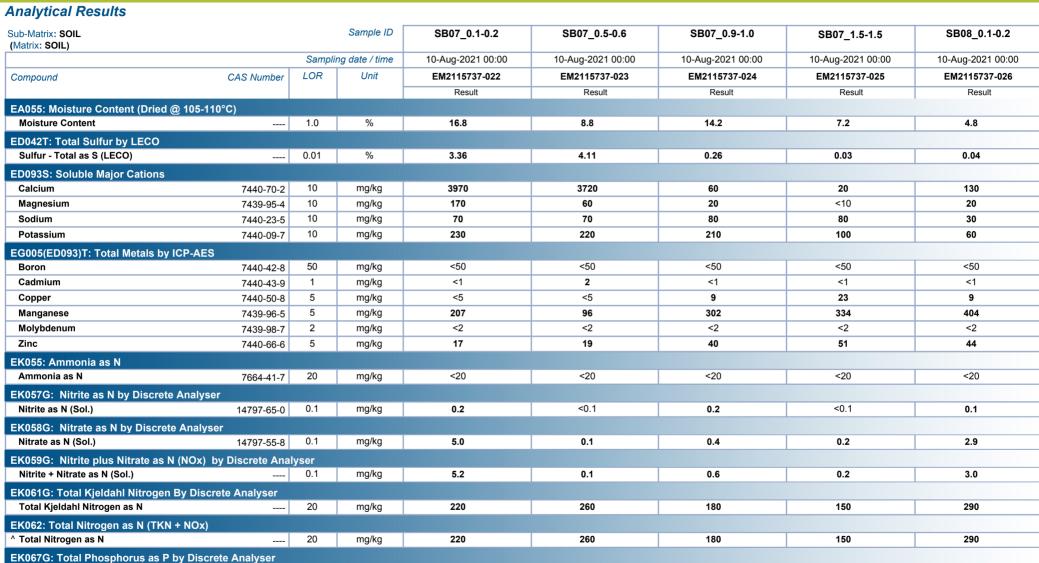
Total Phosphorus as P

Reactive Phosphorus as P

EK071G: Reactive Phosphorus as P by discrete analyser

2

0.1


14265-44-2

mg/kg

mg/kg

2630

16.2



3850

50.8

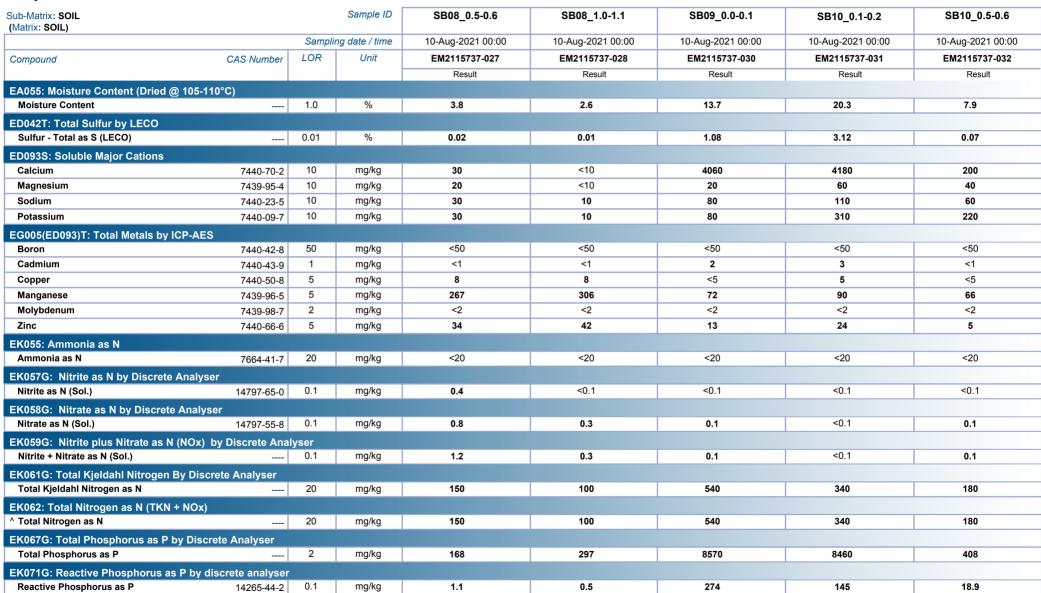
785

41.9

400

0.2

504


1.2



Page : 8 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD

Project : M19067





Page : 9 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD

Project : M19067



| Sub-Matrix: SOIL<br>(Matrix: SOIL)                        |                                    |         | Sample ID      | SB10_0.9-1.0      | SS01              | SS02              | SS03              | SS04              |
|-----------------------------------------------------------|------------------------------------|---------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                                                           |                                    | Samplii | ng date / time | 10-Aug-2021 00:00 | 10-Aug-2021 00:00 | 10-Aug-2021 00:00 | 10-Aug-2021 00:00 | 10-Aug-2021 00:00 |
| Compound                                                  | CAS Number                         | LOR     | Unit           | EM2115737-033     | EM2115737-035     | EM2115737-036     | EM2115737-037     | EM2115737-038     |
|                                                           |                                    |         |                | Result            | Result            | Result            | Result            | Result            |
| EA055: Moisture Content (Dried @ 1                        | 105-110°C)                         |         |                |                   |                   |                   |                   |                   |
| Moisture Content                                          |                                    | 1.0     | %              | 7.3               | <1.0              | 18.4              | 5.4               | 2.5               |
| ED042T: Total Sulfur by LECO                              |                                    |         |                |                   |                   |                   |                   |                   |
| Sulfur - Total as S (LECO)                                |                                    | 0.01    | %              | 0.27              | 0.01              | 0.04              | 0.01              | 0.02              |
| ED093S: Soluble Major Cations                             |                                    |         |                |                   |                   |                   |                   |                   |
| Calcium                                                   | 7440-70-2                          | 10      | mg/kg          | 40                | 10                | 30                | 20                | 40                |
| Magnesium                                                 | 7439-95-4                          | 10      | mg/kg          | 10                | <10               | 20                | 60                | <10               |
| Sodium                                                    | 7440-23-5                          | 10      | mg/kg          | 90                | 20                | 50                | 90                | 10                |
| Potassium                                                 | 7440-09-7                          | 10      | mg/kg          | 240               | 20                | 50                | 30                | 20                |
| EG005(ED093)T: Total Metals by ICF                        | P-AES                              |         |                |                   |                   |                   |                   |                   |
| Boron                                                     | 7440-42-8                          | 50      | mg/kg          | <50               | <50               | <50               | <50               | <50               |
| Cadmium                                                   | 7440-43-9                          | 1       | mg/kg          | <1                | <1                | <1                | <1                | <1                |
| Copper                                                    | 7440-50-8                          | 5       | mg/kg          | <5                | <5                | <5                | <5                | <5                |
| Manganese                                                 | 7439-96-5                          | 5       | mg/kg          | 67                | 108               | 48                | 56                | 40                |
| Molybdenum                                                | 7439-98-7                          | 2       | mg/kg          | <2                | <2                | <2                | <2                | <2                |
| Zinc                                                      | 7440-66-6                          | 5       | mg/kg          | 7                 | 9                 | 6                 | 8                 | <5                |
| EK055: Ammonia as N                                       |                                    |         |                |                   |                   |                   |                   |                   |
| Ammonia as N                                              | 7664-41-7                          | 20      | mg/kg          | <20               | <20               | <20               | <20               | <20               |
| EK057G: Nitrite as N by Discrete Ar                       | nalvser                            |         |                |                   |                   |                   |                   |                   |
| Nitrite as N (Sol.)                                       | 14797-65-0                         | 0.1     | mg/kg          | <0.1              | 0.5               | 0.2               | 0.7               | <0.1              |
| EK058G: Nitrate as N by Discrete A                        | nalyser                            |         |                |                   |                   |                   |                   |                   |
| Nitrate as N (Sol.)                                       | 14797-55-8                         | 0.1     | mg/kg          | 0.3               | 10.6              | 0.8               | 2.2               | 0.2               |
| EK059G: Nitrite plus Nitrate as N (N                      | IOx) by Discrete Analy             | vser    |                |                   |                   |                   |                   |                   |
| Nitrite + Nitrate as N (Sol.)                             |                                    | 0.1     | mg/kg          | 0.3               | 11.1              | 1.0               | 2.9               | 0.2               |
| EK061G: Total Kjeldahl Nitrogen By                        | Discrete Analyser                  |         |                |                   |                   |                   |                   |                   |
| Total Kjeldahl Nitrogen as N                              |                                    | 20      | mg/kg          | 340               | 340               | 990               | 90                | 420               |
| EK062: Total Nitrogen as N (TKN + N                       | NOv)                               |         |                |                   |                   |                   |                   |                   |
| ^ Total Nitrogen as N                                     |                                    | 20      | mg/kg          | 340               | 350               | 990               | 90                | 420               |
| EK067G: Total Phosphorus as P by                          |                                    |         | 5 5            |                   |                   |                   |                   |                   |
| Total Phosphorus as P                                     |                                    | 2       | mg/kg          | 216               | 109               | 199               | 113               | 168               |
|                                                           |                                    | _       |                | ,                 |                   |                   |                   | .00               |
| EK071G: Reactive Phosphorus as P Reactive Phosphorus as P | by discrete analyser<br>14265-44-2 | 0.1     | mg/kg          | 8.6               | 0.6               | 2.4               | 1.1               | 5.0               |
| Meacuve Filospilorus as F                                 | 14200-44-2                         | U. 1    | mg/kg          | 0.0               | 0.0               | 2.4               | 1.1               | 5.0               |

Page : 10 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD

Project : M19067

# Analytical Results



| Sub-Matrix: SOIL (Matrix: SOIL)      |                      |        | Sample ID      | SS05              | QC01              | QC03              | <br> |
|--------------------------------------|----------------------|--------|----------------|-------------------|-------------------|-------------------|------|
| ,                                    |                      | Sampli | ng date / time | 10-Aug-2021 00:00 | 10-Aug-2021 00:00 | 10-Aug-2021 00:00 | <br> |
| Compound                             | CAS Number           | LOR    | Unit           | EM2115737-039     | EM2115737-040     | EM2115737-041     | <br> |
|                                      |                      |        |                | Result            | Result            | Result            | <br> |
| EA055: Moisture Content (Dried @     | 105-110°C)           |        |                |                   |                   |                   |      |
| Moisture Content                     |                      | 1.0    | %              | 2.6               | 4.6               | 8.1               | <br> |
| ED042T: Total Sulfur by LECO         |                      |        |                |                   |                   |                   |      |
| Sulfur - Total as S (LECO)           |                      | 0.01   | %              | <0.01             | 0.02              | 0.86              | <br> |
| ED093S: Soluble Major Cations        |                      |        |                |                   |                   |                   |      |
| Calcium                              | 7440-70-2            | 10     | mg/kg          | <10               | 110               | 3570              | <br> |
| Magnesium                            | 7439-95-4            | 10     | mg/kg          | <10               | 20                | 90                | <br> |
| Sodium                               | 7440-23-5            | 10     | mg/kg          | 20                | 40                | 110               | <br> |
| Potassium                            | 7440-09-7            | 10     | mg/kg          | <10               | 30                | 310               | <br> |
| EG005(ED093)T: Total Metals by IC    | P-AES                |        |                |                   |                   |                   |      |
| Boron                                | 7440-42-8            | 50     | mg/kg          | <50               | <50               | <50               | <br> |
| Cadmium                              | 7440-43-9            | 1      | mg/kg          | <1                | <1                | <1                | <br> |
| Copper                               | 7440-50-8            | 5      | mg/kg          | <5                | 5                 | <5                | <br> |
| Manganese                            | 7439-96-5            | 5      | mg/kg          | 19                | 174               | 65                | <br> |
| Molybdenum                           | 7439-98-7            | 2      | mg/kg          | <2                | <2                | <2                | <br> |
| Zinc                                 | 7440-66-6            | 5      | mg/kg          | <5                | 19                | 7                 | <br> |
| EK055: Ammonia as N                  |                      |        |                |                   |                   |                   |      |
| Ammonia as N                         | 7664-41-7            | 20     | mg/kg          | <20               | <20               | <20               | <br> |
| EK057G: Nitrite as N by Discrete A   | nalyser              |        |                |                   |                   |                   |      |
| Nitrite as N (Sol.)                  | 14797-65-0           | 0.1    | mg/kg          | <0.1              | <0.1              | <0.1              | <br> |
| EK058G: Nitrate as N by Discrete A   | \nalvser             |        |                |                   |                   |                   |      |
| Nitrate as N (Sol.)                  | 14797-55-8           | 0.1    | mg/kg          | 0.1               | 0.3               | 0.1               | <br> |
| EK059G: Nitrite plus Nitrate as N (I | NOx) by Discrete Ana | lvser  |                |                   |                   |                   |      |
| Nitrite + Nitrate as N (Sol.)        |                      | 0.1    | mg/kg          | 0.1               | 0.3               | 0.1               | <br> |
| EK061G: Total Kjeldahl Nitrogen By   | / Discrete Analyser  |        |                |                   |                   |                   |      |
| Total Kjeldahl Nitrogen as N         |                      | 20     | mg/kg          | <20               | 480               | 220               | <br> |
| EK062: Total Nitrogen as N (TKN +    |                      |        |                |                   |                   |                   |      |
| ^ Total Nitrogen as N                |                      | 20     | mg/kg          | <20               | 480               | 220               | <br> |
| EK067G: Total Phosphorus as P by     |                      |        |                |                   |                   |                   |      |
| Total Phosphorus as P                |                      | 2      | mg/kg          | 69                | 116               | 2240              | <br> |
| EK071G: Reactive Phosphorus as F     |                      | _      | שייישייי       |                   |                   | *                 |      |
| Reactive Phosphorus as P             | 14265-44-2           | 0.1    | mg/kg          | 0.1               | <0.1              | 66.9              | <br> |
| reactive i nospilorus as i           | 14200-44-2           | 0.1    | 11197119       | V. I              | -0.1              | 00.5              | <br> |

Page : 11 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD

Project : M19067

# Inter-Laboratory Testing

Analysis conducted by ALS Brisbane, NATA accreditation no. 825, site no. 818 (Chemistry) 18958 (Biology).

(SOIL) ED042T: Total Sulfur by LECO





## **QUALITY CONTROL REPORT**

· EM2115737 Work Order Page

Client : SENVERSA PTY LTD Laboratory : Environmental Division Melbourne

Contact : LUCINDA TRICKEY

Address : Level 6, 15 William St

Melbourne VICTORIA, AUSTRALIA 3000

: +61 03 9606 0070 Telephone Project : M19067

Order number : ----

C-O-C number

Sampler : James Horne, Kelley Cheney

Site

Quote number : EN/103/20 (primary work only)

No. of samples received : 42 No. of samples analysed : 38 : 1 of 7

Contact : Peter Ravlic

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +6138549 9645 Date Samples Received : 10-Aug-2021 **Date Analysis Commenced** : 13-Aug-2021

: 24-Aug-2021 Issue Date



This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

### Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Dilani Fernando Senior Inorganic Chemist Melbourne Inorganics, Springvale, VIC Jarwis Nheu Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC Nikki Stepniewski Senior Inorganic Instrument Chemist Melbourne Inorganics, Springvale, VIC Brisbane Acid Sulphate Soils, Stafford, QLD Satishkumar Trivedi Senior Acid Sulfate Soil Chemist

Page : 2 of 7
Work Order : EM2115737

Client : SENVERSA PTY LTD

Project : M19067



### General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

# = Indicates failed QC

### Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

| Sub-Matrix: SOIL     |                       |                    |            |     |       | Laboratory I    | Duplicate (DUP) Report |         |                    |
|----------------------|-----------------------|--------------------|------------|-----|-------|-----------------|------------------------|---------|--------------------|
| Laboratory sample ID | Sample ID             | Method: Compound   | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Acceptable RPD (%) |
| EG005(ED093)T: To    | tal Metals by ICP-AES | (QC Lot: 3844096)  |            |     |       |                 |                        |         |                    |
| EM2115737-001        | SB01_0.1-0.2          | EG005T: Cadmium    | 7440-43-9  | 1   | mg/kg | <1              | <1                     | 0.0     | No Limit           |
|                      |                       | EG005T: Molybdenum | 7439-98-7  | 2   | mg/kg | <2              | <2                     | 0.0     | No Limit           |
|                      |                       | EG005T: Copper     | 7440-50-8  | 5   | mg/kg | <5              | <5                     | 0.0     | No Limit           |
|                      |                       | EG005T: Manganese  | 7439-96-5  | 5   | mg/kg | 19              | 22                     | 13.1    | No Limit           |
|                      |                       | EG005T: Zinc       | 7440-66-6  | 5   | mg/kg | <5              | 6                      | 0.0     | No Limit           |
|                      |                       | EG005T: Boron      | 7440-42-8  | 50  | mg/kg | <50             | <50                    | 0.0     | No Limit           |
| EM2115737-011        | SB03_0.5-0.6          | EG005T: Cadmium    | 7440-43-9  | 1   | mg/kg | 1               | 1                      | 0.0     | No Limit           |
|                      |                       | EG005T: Molybdenum | 7439-98-7  | 2   | mg/kg | <2              | <2                     | 0.0     | No Limit           |
|                      |                       | EG005T: Copper     | 7440-50-8  | 5   | mg/kg | 19              | 22                     | 14.9    | No Limit           |
|                      |                       | EG005T: Manganese  | 7439-96-5  | 5   | mg/kg | 146             | 153                    | 4.7     | 0% - 20%           |
|                      |                       | EG005T: Zinc       | 7440-66-6  | 5   | mg/kg | 122             | 128                    | 4.9     | 0% - 20%           |
|                      |                       | EG005T: Boron      | 7440-42-8  | 50  | mg/kg | <50             | <50                    | 0.0     | No Limit           |
| EG005(ED093)T: To    | tal Metals by ICP-AES | (QC Lot: 3844097)  |            |     |       |                 |                        |         |                    |
| EM2115737-022        | SB07_0.1-0.2          | EG005T: Cadmium    | 7440-43-9  | 1   | mg/kg | <1              | <1                     | 0.0     | No Limit           |
|                      |                       | EG005T: Molybdenum | 7439-98-7  | 2   | mg/kg | <2              | <2                     | 0.0     | No Limit           |
|                      |                       | EG005T: Copper     | 7440-50-8  | 5   | mg/kg | <5              | <5                     | 0.0     | No Limit           |
|                      |                       | EG005T: Manganese  | 7439-96-5  | 5   | mg/kg | 207             | 243                    | 15.7    | 0% - 20%           |
|                      |                       | EG005T: Zinc       | 7440-66-6  | 5   | mg/kg | 17              | 18                     | 8.8     | No Limit           |
|                      |                       | EG005T: Boron      | 7440-42-8  | 50  | mg/kg | <50             | <50                    | 0.0     | No Limit           |
| EM2115737-032        | SB10_0.5-0.6          | EG005T: Cadmium    | 7440-43-9  | 1   | mg/kg | <1              | <1                     | 0.0     | No Limit           |
|                      |                       | EG005T: Molybdenum | 7439-98-7  | 2   | mg/kg | <2              | <2                     | 0.0     | No Limit           |
|                      |                       | EG005T: Copper     | 7440-50-8  | 5   | mg/kg | <5              | <5                     | 0.0     | No Limit           |
|                      |                       | EG005T: Manganese  | 7439-96-5  | 5   | mg/kg | 66              | 69                     | 3.3     | 0% - 50%           |
|                      |                       | EG005T: Zinc       | 7440-66-6  | 5   | mg/kg | 5               | 5                      | 0.0     | No Limit           |

Page : 3 of 7
Work Order : EM2115737

Client : SENVERSA PTY LTD



| ub-Matrix: SOIL      |                              |                                     |            |      |                | Laboratory L    | Duplicate (DUP) Report |         |                   |
|----------------------|------------------------------|-------------------------------------|------------|------|----------------|-----------------|------------------------|---------|-------------------|
| aboratory sample ID  | Sample ID                    | Method: Compound                    | CAS Number | LOR  | Unit           | Original Result | Duplicate Result       | RPD (%) | Acceptable RPD (% |
| • •                  | otal Metals by ICP-AES       | (QC Lot: 3844097) - continued       |            |      |                |                 |                        |         |                   |
| M2115737-032         | SB10_0.5-0.6                 | EG005T: Boron                       | 7440-42-8  | 50   | mg/kg          | <50             | <50                    | 0.0     | No Limit          |
| A055: Moisture C     | ontent (Dried @ 105-110      | 0°C) (QC Lot: 3844213)              |            |      |                |                 |                        |         |                   |
| M2115737-001         | SB01_0.1-0.2                 | EA055: Moisture Content             |            | 0.1  | %              | 10.3            | 11.4                   | 10.0    | 0% - 50%          |
| M2115737-012         | SB03_0.9-1.0                 | EA055: Moisture Content             |            | 0.1  | %              | 8.4             | 5.8                    | 36.4    | No Limit          |
| A055: Moisture C     | ontent (Dried @ 105-110      | 0°C) (QC Lot: 3844214)              |            |      |                |                 |                        |         |                   |
| M2115737-022         | SB07 0.1-0.2                 | EA055: Moisture Content             |            | 0.1  | %              | 16.8            | 12.6                   | 27.9    | 0% - 50%          |
| EM2115737-033        | SB10_0.9-1.0                 | EA055: Moisture Content             |            | 0.1  | %              | 7.3             | 7.0                    | 4.1     | No Limit          |
| D042T: Total Sulf    | ur by LECO (QC Lot: 38       | 360127)                             |            |      |                |                 |                        |         |                   |
| M2115737-001         | SB01 0.1-0.2                 | ED042T: Sulfur - Total as S (LECO)  |            | 0.01 | %              | 0.01            | 0.01                   | 0.0     | No Limit          |
| M2115737-012         | SB03 0.9-1.0                 | ED042T: Sulfur - Total as S (LECO)  |            | 0.01 | %              | 0.08            | 0.08                   | 0.0     | No Limit          |
|                      | ur by LECO (QC Lot: 38       | . ,                                 |            |      |                |                 |                        |         |                   |
| M2115737-022         | SB07 0.1-0.2                 | ED042T: Sulfur - Total as S (LECO)  |            | 0.01 | %              | 3.36            | 3.44                   | 2.5     | 0% - 20%          |
| EM2115737-033        | SB10 0.9-1.0                 | ED042T: Sulfur - Total as S (LECO)  |            | 0.01 | %              | 0.27            | 0.26                   | 5.5     | 0% - 20%          |
|                      | lajor Cations (QC Lot: 3     |                                     |            | 0.01 | 70             | 0.21            | 0.20                   | 0.0     | 070 2070          |
| M2115737-001         | · ·                          |                                     | 7440-70-2  | 10   | ma/ka          | 50              | 50                     | 0.0     | No Limit          |
| :IVIZ 1 157 37 -00 1 | SB01_0.1-0.2                 | ED093S: Calcium                     | 7439-95-4  | 10   | mg/kg          | 30              | 30                     | 0.0     | No Limit          |
|                      |                              | ED093S: Magnesium                   | 7440-23-5  | 10   | mg/kg<br>mg/kg | 70              | 70                     | 0.0     | No Limit          |
|                      |                              | ED093S: Sodium                      | 7440-23-3  | 10   | mg/kg          | 20              | 10                     | 0.0     | No Limit          |
| EM2115737-011        | SB03_0.5-0.6                 | ED093S: Potassium ED093S: Calcium   | 7440-70-2  | 10   | mg/kg          | 3660            | 3740                   | 2.2     | 0% - 20%          |
| INIZ 1 137 37 -011   | 0000_0.0-0.0                 | ED093S: Calcium ED093S: Magnesium   | 7439-95-4  | 10   | mg/kg          | 690             | 710                    | 2.1     | 0% - 20%          |
|                      |                              | ED093S: Nagriesium ED093S: Sodium   | 7440-23-5  | 10   | mg/kg          | 930             | 950                    | 2.1     | 0% - 20%          |
|                      |                              | ED093S: Potassium                   | 7440-09-7  | 10   | mg/kg          | 2330            | 2380                   | 2.0     | 0% - 20%          |
| D003S: Salubla M     | lajor Cations (QC Lot: 3     |                                     |            |      | 99             | 2000            |                        |         | 070 2070          |
| M2115737-032         | SB10 0.5-0.6                 |                                     | 7440-70-2  | 10   | mg/kg          | 200             | # 110                  | 59.5    | 0% - 20%          |
| M2115737-032         | SB07_0.1-0.2                 | ED093S: Calcium                     | 7440-70-2  | 10   | mg/kg          | 3970            | 3880                   | 2.3     | 0% - 20%          |
| .IVIZ 1 137 37 -022  | 3507_0.1-0.2                 | ED093S: Calcium                     | 7439-95-4  | 10   | mg/kg          | 170             | 130                    | 27.8    | 0% - 50%          |
|                      |                              | ED093S: Magnesium                   | 7440-23-5  | 10   | mg/kg          | 70              | 70                     | 0.0     | No Limit          |
|                      |                              | ED093S: Sodium<br>ED093S: Potassium | 7440-09-7  | 10   | mg/kg          | 230             | 210                    | 9.7     | 0% - 20%          |
| M2115737-032         | SB10_0.5-0.6                 | ED093S: Potassium ED093S: Magnesium | 7439-95-4  | 10   | mg/kg          | 40              | 30                     | 33.1    | No Limit          |
| .W.2110707 002       | 0510_0.0 0.0                 | ED093S: Nagriesium ED093S: Sodium   | 7440-23-5  | 10   | mg/kg          | 60              | 60                     | 0.0     | No Limit          |
|                      |                              | ED093S: Potassium                   | 7440-09-7  | 10   | mg/kg          | 220             | 190                    | 14.2    | 0% - 20%          |
| KOSS: Ammonia a      | s N (QC Lot: 3843984)        | ED0933. Fotassium                   |            |      | 99             |                 | 100                    | · ··-   | 070 2070          |
| M2115737-001         | SB01_0.1-0.2                 | TKOFF: Ammonio os N                 | 7664-41-7  | 20   | ma/ka          | <20             | <20                    | 0.0     | No Limit          |
| M2115737-001         | SB01_0.1-0.2<br>SB03_0.9-1.0 | EK055: Ammonia as N                 | 7664-41-7  | 20   | mg/kg<br>mg/kg | <20             | <20                    | 0.0     | No Limit          |
|                      | _                            | EK055: Ammonia as N                 | 7004-41-7  | 20   | mg/kg          | 720             | ~20                    | 0.0     | INO LIIIII        |
|                      | s N (QC Lot: 3843985)        |                                     | 7004447    | 00   |                | .00             | .00                    | 0.0     | <b>N</b> 1 11 11  |
| M2115737-022         | SB07_0.1-0.2                 | EK055: Ammonia as N                 | 7664-41-7  | 20   | mg/kg          | <20             | <20                    | 0.0     | No Limit          |
| M2115737-033         | SB10_0.9-1.0                 | EK055: Ammonia as N                 | 7664-41-7  | 20   | mg/kg          | <20             | <20                    | 0.0     | No Limit          |

Page : 4 of 7
Work Order : EM2115737

Client : SENVERSA PTY LTD



| Sub-Matrix: SOIL     |                         |                                       |            |     |       | Laboratory L    | Ouplicate (DUP) Report |         |                    |
|----------------------|-------------------------|---------------------------------------|------------|-----|-------|-----------------|------------------------|---------|--------------------|
| Laboratory sample ID | Sample ID               | Method: Compound                      | CAS Number | LOR | Unit  | Original Result | Duplicate Result       | RPD (%) | Acceptable RPD (%) |
| EK057G: Nitrite as   | N by Discrete Analyse   | r (QC Lot: 3846222) - continued       |            |     |       |                 |                        |         |                    |
| EM2115737-001        | SB01_0.1-0.2            | EK057G: Nitrite as N (Sol.)           | 14797-65-0 | 0.1 | mg/kg | 0.4             | 0.4                    | 0.0     | No Limit           |
| EM2115737-011        | SB03_0.5-0.6            | EK057G: Nitrite as N (Sol.)           | 14797-65-0 | 0.1 | mg/kg | 0.3             | 0.3                    | 0.0     | No Limit           |
| EK057G: Nitrite as   | N by Discrete Analyser  | r (QC Lot: 3846226)                   |            |     |       |                 |                        |         |                    |
| EM2115737-022        | SB07_0.1-0.2            | EK057G: Nitrite as N (Sol.)           | 14797-65-0 | 0.1 | mg/kg | 0.2             | 0.2                    | 0.0     | No Limit           |
| EM2115737-032        | SB10_0.5-0.6            | EK057G: Nitrite as N (Sol.)           | 14797-65-0 | 0.1 | mg/kg | <0.1            | <0.1                   | 0.0     | No Limit           |
| EK059G: Nitrite plu  | s Nitrate as N (NOx) b  | y Discrete Analyser (QC Lot: 3846223) |            |     |       |                 |                        |         |                    |
| EM2115737-001        | SB01_0.1-0.2            | EK059G: Nitrite + Nitrate as N (Sol.) |            | 0.1 | mg/kg | 1.2             | 1.5                    | 24.4    | 0% - 50%           |
| EM2115737-011        | SB03_0.5-0.6            | EK059G: Nitrite + Nitrate as N (Sol.) |            | 0.1 | mg/kg | 389             | 403                    | 3.6     | 0% - 20%           |
| EK059G: Nitrite plu  | s Nitrate as N (NOx) b  | y Discrete Analyser (QC Lot: 3846227) |            |     |       |                 |                        |         |                    |
| EM2115737-022        | SB07_0.1-0.2            | EK059G: Nitrite + Nitrate as N (Sol.) |            | 0.1 | mg/kg | 5.2             | 4.7                    | 10.1    | 0% - 20%           |
| EM2115737-032        | SB10_0.5-0.6            | EK059G: Nitrite + Nitrate as N (Sol.) |            | 0.1 | mg/kg | 0.1             | <0.1                   | 0.0     | No Limit           |
| EK061G: Total Kjelo  | dahl Nitrogen By Discre | ete Analyser (QC Lot: 3843336)        |            |     |       |                 |                        |         |                    |
| EM2115737-001        | SB01_0.1-0.2            | EK061G: Total Kjeldahl Nitrogen as N  |            | 20  | mg/kg | 150             | 180                    | 22.0    | No Limit           |
| EM2115737-011        | SB03_0.5-0.6            | EK061G: Total Kjeldahl Nitrogen as N  |            | 20  | mg/kg | 480             | 410                    | 14.5    | 0% - 20%           |
| EK061G: Total Kjelo  | dahl Nitrogen By Discre | ete Analyser (QC Lot: 3843338)        |            |     |       |                 |                        |         |                    |
| EM2115737-022        | SB07_0.1-0.2            | EK061G: Total Kjeldahl Nitrogen as N  |            | 20  | mg/kg | 220             | 180                    | 21.4    | 0% - 50%           |
| EM2115737-032        | SB10_0.5-0.6            | EK061G: Total Kjeldahl Nitrogen as N  |            | 20  | mg/kg | 180             | 210                    | 13.6    | 0% - 50%           |
| EK067G: Total Phos   | sphorus as P by Discre  | ete Analyser (QC Lot: 3843337)        |            |     |       |                 |                        |         |                    |
| EM2115737-001        | SB01_0.1-0.2            | EK067G: Total Phosphorus as P         |            | 2   | mg/kg | 72              | 72                     | 0.0     | 0% - 20%           |
| EM2115737-011        | SB03_0.5-0.6            | EK067G: Total Phosphorus as P         |            | 2   | mg/kg | 109             | 111                    | 2.1     | 0% - 20%           |
| EK067G: Total Phos   | sphorus as P by Discre  | ete Analyser (QC Lot: 3843339)        |            |     |       |                 |                        |         |                    |
| EM2115737-022        | SB07_0.1-0.2            | EK067G: Total Phosphorus as P         |            | 2   | mg/kg | 2630            | 2160                   | 19.6    | 0% - 20%           |
| EM2115737-032        | SB10_0.5-0.6            | EK067G: Total Phosphorus as P         |            | 2   | mg/kg | 408             | 408                    | 0.0     | 0% - 20%           |
| EK067G: Total Phos   | sphorus as P by Discre  | ete Analyser (QC Lot: 3848078)        |            |     |       |                 |                        |         |                    |
| EM2115737-001        | SB01_0.1-0.2            | EK067G: Total Phosphorus as P         |            | 2   | mg/kg | 72              | 73                     | 1.7     | 0% - 20%           |
| EK071G: Reactive F   | Phosphorus as P by dis  | screte analyser (QC Lot: 3846224)     |            |     |       |                 |                        |         |                    |
| EM2115737-001        | SB01_0.1-0.2            | EK071G: Reactive Phosphorus as P      | 14265-44-2 | 0.1 | mg/kg | 0.9             | 1.3                    | 33.2    | 0% - 50%           |
| EM2115737-011        | SB03_0.5-0.6            | EK071G: Reactive Phosphorus as P      | 14265-44-2 | 0.1 | mg/kg | 3.5             | 3.5                    | 0.0     | 0% - 20%           |
| EK071G: Reactive P   | Phosphorus as P by dis  | screte analyser (QC Lot: 3846228)     |            |     |       |                 |                        |         |                    |
| EM2115737-022        | SB07_0.1-0.2            | EK071G: Reactive Phosphorus as P      | 14265-44-2 | 0.1 | mg/kg | 16.2            | 15.2                   | 6.2     | 0% - 20%           |
| EM2115737-032        | SB10_0.5-0.6            | EK071G: Reactive Phosphorus as P      | 14265-44-2 | 0.1 | mg/kg | 18.9            | 18.4                   | 2.7     | 0% - 20%           |

Page : 5 of 7 Work Order : EM2115737

Client : SENVERSA PTY LTD

Project : M19067



# Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

| Sub-Matrix: SOIL                                                                          |            |      |         | Method Blank (MB) |               | Laboratory Control Spike (LCS | LCS) Report |            |  |
|-------------------------------------------------------------------------------------------|------------|------|---------|-------------------|---------------|-------------------------------|-------------|------------|--|
|                                                                                           |            |      |         | Report            | Spike         | Spike Recovery (%)            | Acceptable  | Limits (%) |  |
| Method: Compound                                                                          | CAS Number | LOR  | Unit    | Result            | Concentration | LCS                           | Low         | High       |  |
| EG005(ED093)T: Total Metals by ICP-AES (QCLot: 3844096)                                   |            |      |         |                   |               |                               |             |            |  |
| EG005T: Boron                                                                             | 7440-42-8  | 50   | mg/kg   | <50               |               |                               |             |            |  |
| EG005T: Cadmium                                                                           | 7440-43-9  | 1    | mg/kg   | <1                | 1.23 mg/kg    | 57.0                          | 50.0        | 130        |  |
| EG005T: Copper                                                                            | 7440-50-8  | 5    | mg/kg   | <5                | 55.9 mg/kg    | 85.8                          | 70.0        | 130        |  |
| EG005T: Manganese                                                                         | 7439-96-5  | 5    | mg/kg   | <5                | 590 mg/kg     | 92.4                          | 70.0        | 130        |  |
| EG005T: Molybdenum                                                                        | 7439-98-7  | 2    | mg/kg   | <2                | 2.19 mg/kg    | 77.3                          | 70.0        | 130        |  |
| EG005T: Zinc                                                                              | 7440-66-6  | 5    | mg/kg   | <5                | 162 mg/kg     | 71.8                          | 70.0        | 130        |  |
| EG005(ED093)T: Total Metals by ICP-AES (QCLot: 3844097)                                   |            |      |         |                   |               |                               |             |            |  |
| EG005T: Boron                                                                             | 7440-42-8  | 50   | mg/kg   | <50               |               |                               |             |            |  |
| EG005T: Cadmium                                                                           | 7440-43-9  | 1    | mg/kg   | <1                | 1.23 mg/kg    | 55.4                          | 50.0        | 130        |  |
| EG005T: Copper                                                                            | 7440-50-8  | 5    | mg/kg   | <5                | 55.9 mg/kg    | 85.9                          | 70.0        | 130        |  |
| EG005T: Manganese                                                                         | 7439-96-5  | 5    | mg/kg   | <5                | 590 mg/kg     | 92.0                          | 70.0        | 130        |  |
| EG005T: Molybdenum                                                                        | 7439-98-7  | 2    | mg/kg   | <2                | 2.19 mg/kg    | 74.0                          | 70.0        | 130        |  |
| EG005T: Zinc                                                                              | 7440-66-6  | 5    | mg/kg   | <5                | 162 mg/kg     | 71.2                          | 70.0        | 130        |  |
| ED042T: Total Sulfur by LECO (QCLot: 3860127)                                             |            |      |         |                   |               |                               |             |            |  |
| ED042T: Sulfur - Total as S (LECO)                                                        |            | 0.01 | %       | <0.01             | 0.16 %        | 102                           | 70.0        | 130        |  |
| ED042T: Total Sulfur by LECO (QCLot: 3860128)                                             |            |      |         |                   |               |                               |             |            |  |
| ED042T: Sulfur - Total as S (LECO)                                                        |            | 0.01 | %       | <0.01             | 4.59 %        | 97.9                          | 70.0        | 130        |  |
| ED093S: Soluble Major Cations (QCLot: 3846225)                                            |            |      |         |                   |               |                               |             |            |  |
| ED093S: Calcium                                                                           | 7440-70-2  | 10   | mg/kg   | <10               | 25 mg/kg      | 109                           | 91.0        | 118        |  |
| ED093S: Magnesium                                                                         | 7439-95-4  | 10   | mg/kg   | <10               | 25 mg/kg      | 108                           | 85.9        | 116        |  |
| ED093S: Sodium                                                                            | 7440-23-5  | 10   | mg/kg   | <10               | 250 mg/kg     | 107                           | 85.9        | 117        |  |
| ED093S: Potassium                                                                         | 7440-09-7  | 10   | mg/kg   | <10               | 250 mg/kg     | 101                           | 84.6        | 116        |  |
| ED093S: Soluble Major Cations (QCLot: 3846229)                                            |            |      |         |                   |               |                               |             |            |  |
| ED093S: Calcium                                                                           | 7440-70-2  | 10   | mg/kg   | <10               | 25 mg/kg      | 108                           | 91.0        | 118        |  |
| ED093S: Magnesium                                                                         | 7439-95-4  | 10   | mg/kg   | <10               | 25 mg/kg      | 106                           | 85.9        | 116        |  |
| ED093S: Sodium                                                                            | 7440-23-5  | 10   | mg/kg   | <10               | 250 mg/kg     | 105                           | 85.9        | 117        |  |
| ED093S: Potassium                                                                         | 7440-09-7  | 10   | mg/kg   | <10               | 250 mg/kg     | 100.0                         | 84.6        | 116        |  |
| EK055: Ammonia as N (QCLot: 3843984)                                                      |            |      |         |                   |               |                               |             |            |  |
| EK055: Ammonia as N                                                                       | 7664-41-7  | 20   | mg/kg   | <20               | 25 mg/kg      | 97.9                          | 83.0        | 109        |  |
| EK055: Ammonia as N (QCLot: 3843985)                                                      |            |      |         |                   |               |                               |             |            |  |
| EK055: Ammonia as N                                                                       | 7664-41-7  | 20   | mg/kg   | <20               | 25 mg/kg      | 98.4                          | 83.0        | 109        |  |
|                                                                                           |            |      |         |                   | _===          |                               | 33.3        |            |  |
| EK057G: Nitrite as N by Discrete Analyser (QCLot: 3846222)<br>EK057G: Nitrite as N (Sol.) | 14797-65-0 | 0.1  | mg/kg   | <0.1              | 2.5 mg/kg     | 106                           | 88.9        | 113        |  |
| ENUOTO. MILITIE AS IN (SUL)                                                               | 1-101-00-0 | U. I | ilig/kg | 70.1              | 2.0 mg/kg     | 100                           | 00.5        | 113        |  |

Page : 6 of 7 Work Order : EM2115737

Client : SENVERSA PTY LTD

Project : M19067



| Sub-Matrix: SOIL                                               |            |        |       | Method Blank (MB) | Laboratory Control Spike (LCS) Report |                    |            |            |  |  |
|----------------------------------------------------------------|------------|--------|-------|-------------------|---------------------------------------|--------------------|------------|------------|--|--|
|                                                                |            |        |       | Report            | Spike                                 | Spike Recovery (%) | Acceptable | Limits (%) |  |  |
| Method: Compound                                               | AS Number  | LOR    | Unit  | Result            | Concentration                         | LCS                | Low        | High       |  |  |
| EK057G: Nitrite as N by Discrete Analyser (QCLot: 3846226)     |            |        |       |                   |                                       |                    |            |            |  |  |
| EK057G: Nitrite as N (Sol.)                                    | 797-65-0   | 0.1    | mg/kg | <0.1              | 2.5 mg/kg                             | 107                | 88.9       | 113        |  |  |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser ( | (QCLot: 38 | 46223) |       |                   |                                       |                    |            |            |  |  |
| EK059G: Nitrite + Nitrate as N (Sol.)                          |            | 0.1    | mg/kg | <0.1              | 2.5 mg/kg                             | 106                | 89.5       | 119        |  |  |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete Analyser ( | (QCLot: 38 | 46227) |       |                   |                                       |                    |            |            |  |  |
| EK059G: Nitrite + Nitrate as N (Sol.)                          |            | 0.1    | mg/kg | <0.1              | 2.5 mg/kg                             | 107                | 89.5       | 119        |  |  |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot:   | 3843336)   |        |       |                   |                                       |                    |            |            |  |  |
| EK061G: Total Kjeldahl Nitrogen as N                           |            | 20     | mg/kg | <20               | 500 mg/kg                             | 98.9               | 70.0       | 130        |  |  |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser (QCLot:   | 3843338)   |        |       |                   |                                       |                    |            |            |  |  |
| EK061G: Total Kjeldahl Nitrogen as N                           |            | 20     | mg/kg | <20               | 500 mg/kg                             | 98.0               | 70.0       | 130        |  |  |
| EK067G: Total Phosphorus as P by Discrete Analyser (QCLot:     | 3843337)   |        |       |                   |                                       |                    |            |            |  |  |
| EK067G: Total Phosphorus as P                                  |            | 2      | mg/kg | <2                | 221 mg/kg                             | 94.9               | 78.3       | 127        |  |  |
| EK067G: Total Phosphorus as P by Discrete Analyser (QCLot:     | 3843339)   |        |       |                   |                                       |                    |            |            |  |  |
| EK067G: Total Phosphorus as P                                  |            | 2      | mg/kg | <2                | 221 mg/kg                             | 126                | 78.3       | 127        |  |  |
| EK067G: Total Phosphorus as P by Discrete Analyser (QCLot:     | 3848078)   |        |       |                   |                                       |                    |            |            |  |  |
| EK067G: Total Phosphorus as P                                  |            | 2      | mg/kg | <2                | 221 mg/kg                             | 101                | 78.3       | 127        |  |  |
| EK071G: Reactive Phosphorus as P by discrete analyser(QCL      | ot: 384622 | 4)     |       |                   |                                       |                    |            |            |  |  |
| EK071G: Reactive Phosphorus as P                               | 265-44-2   | 0.1    | mg/kg | <0.1              | 2.5 mg/kg                             | 104                | 84.0       | 116        |  |  |
| EK071G: Reactive Phosphorus as P by discrete analyser(QCL      | ot: 384622 | B)     |       |                   |                                       |                    |            |            |  |  |
|                                                                | 265-44-2   | 0.1    | mg/kg | <0.1              | 2.5 mg/kg                             | 105                | 84.0       | 116        |  |  |

# Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

| Sub-Matrix: SOIL     |                                         |                  |            | Ma            | atrix Spike (MS) Report |              |            |
|----------------------|-----------------------------------------|------------------|------------|---------------|-------------------------|--------------|------------|
|                      |                                         |                  |            | Spike         | SpikeRecovery(%)        | Acceptable i | Limits (%) |
| Laboratory sample ID | Sample ID                               | Method: Compound | CAS Number | Concentration | MS                      | Low          | High       |
| EG005(ED093)T: To    | otal Metals by ICP-AES (QCLot: 3844096) |                  |            |               |                         |              |            |
| EM2115737-002        | SB01_0.5-0.6                            | EG005T: Cadmium  | 7440-43-9  | 50 mg/kg      | 97.7                    | 79.7         | 116        |
|                      |                                         | EG005T: Copper   | 7440-50-8  | 250 mg/kg     | 95.9                    | 80.0         | 120        |
|                      |                                         | EG005T: Zinc     | 7440-66-6  | 250 mg/kg     | 94.7                    | 80.0         | 120        |
| EG005(ED093)T: To    | otal Metals by ICP-AES (QCLot: 3844097) |                  |            |               |                         |              |            |
| EM2115737-023        | SB07_0.5-0.6                            | EG005T: Cadmium  | 7440-43-9  | 50 mg/kg      | 92.1                    | 79.7         | 116        |
|                      |                                         | EG005T: Copper   | 7440-50-8  | 250 mg/kg     | 100                     | 80.0         | 120        |
|                      |                                         | EG005T: Zinc     | 7440-66-6  | 250 mg/kg     | 90.9                    | 80.0         | 120        |
| EK055: Ammonia a     | as N (QCLot: 3843984)                   |                  |            |               |                         |              |            |

Page : 7 of 7
Work Order : EM2115737

Client : SENVERSA PTY LTD



| Sub-Matrix: SOIL     |                                                         |                                       |            |               | atrix Spike (MS) Report |               |          |
|----------------------|---------------------------------------------------------|---------------------------------------|------------|---------------|-------------------------|---------------|----------|
|                      |                                                         |                                       |            | Spike         | SpikeRecovery(%)        | Acceptable Li | mits (%) |
| Laboratory sample ID | Sample ID                                               | Method: Compound                      | CAS Number | Concentration | MS                      | Low           | High     |
| EK055: Ammonia       | as N (QCLot: 3843984) - continued                       |                                       |            |               |                         |               |          |
| EM2115737-002        | SB01_0.5-0.6                                            | EK055: Ammonia as N                   | 7664-41-7  | 50 mg/kg      | 96.6                    | 80.0          | 110      |
| EK055: Ammonia       | as N (QCLot: 3843985)                                   |                                       |            |               |                         |               |          |
| EM2115737-023        | SB07_0.5-0.6                                            | EK055: Ammonia as N                   | 7664-41-7  | 50 mg/kg      | 99.4                    | 80.0          | 110      |
| EK057G: Nitrite as   | s N by Discrete Analyser (QCLot: 3846222)               |                                       |            |               |                         |               |          |
| EM2115737-002        | SB01_0.5-0.6                                            | EK057G: Nitrite as N (Sol.)           | 14797-65-0 | 2.5 mg/kg     | 87.1                    | 84.0          | 128      |
| EK057G: Nitrite as   | s N by Discrete Analyser (QCLot: 3846226)               |                                       |            |               |                         |               |          |
| EM2115737-023        | SB07_0.5-0.6                                            | EK057G: Nitrite as N (Sol.)           | 14797-65-0 | 2.5 mg/kg     | 103                     | 84.0          | 128      |
| EK059G: Nitrite p    | lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 384 | 16223)                                |            |               |                         |               |          |
| EM2115737-002        | SB01_0.5-0.6                                            | EK059G: Nitrite + Nitrate as N (Sol.) |            | 2.5 mg/kg     | 93.4                    | 70.0          | 130      |
| EK059G: Nitrite p    | lus Nitrate as N (NOx) by Discrete Analyser (QCLot: 384 | 16227)                                |            |               |                         |               |          |
| EM2115737-023        | SB07_0.5-0.6                                            | EK059G: Nitrite + Nitrate as N (Sol.) |            | 2.5 mg/kg     | 97.0                    | 70.0          | 130      |
| EK061G: Total Kje    | Idahl Nitrogen By Discrete Analyser (QCLot: 3843336)    |                                       |            |               |                         |               |          |
| EM2115737-002        | SB01_0.5-0.6                                            | EK061G: Total Kjeldahl Nitrogen as N  |            | 500 mg/kg     | 74.3                    | 70.0          | 130      |
| EK061G: Total Kje    | Idahl Nitrogen By Discrete Analyser (QCLot: 3843338)    |                                       |            |               |                         |               |          |
| EM2115737-023        | SB07_0.5-0.6                                            | EK061G: Total Kjeldahl Nitrogen as N  |            | 500 mg/kg     | 96.8                    | 70.0          | 130      |
| EK067G: Total Pho    | osphorus as P by Discrete Analyser (QCLot: 3843337)     |                                       |            |               |                         |               |          |
| EM2115737-002        | SB01_0.5-0.6                                            | EK067G: Total Phosphorus as P         |            | 100 mg/kg     | 93.2                    | 70.0          | 130      |
| EK067G: Total Pho    | osphorus as P by Discrete Analyser (QCLot: 3843339)     |                                       |            |               |                         |               |          |
| EM2115737-023        | SB07_0.5-0.6                                            | EK067G: Total Phosphorus as P         |            | 100 mg/kg     | # Not<br>Determined     | 70.0          | 130      |
| EK067G: Total Pho    | osphorus as P by Discrete Analyser (QCLot: 3848078)     |                                       |            |               |                         |               |          |
| EM2115737-022        | SB07_0.1-0.2                                            | EK067G: Total Phosphorus as P         |            | 100 mg/kg     | # Not<br>Determined     | 70.0          | 130      |
| EK071G: Reactive     | Phosphorus as P by discrete analyser (QCLot: 3846224    | 9)                                    |            |               |                         |               |          |
| EM2115737-002        | SB01_0.5-0.6                                            | EK071G: Reactive Phosphorus as P      | 14265-44-2 | 2.5 mg/kg     | 99.1                    | 73.0          | 133      |
| EK071G: Reactive     | Phosphorus as P by discrete analyser (QCLot: 3846228    |                                       |            |               |                         |               |          |
| EM2115737-023        | SB07_0.5-0.6                                            | EK071G: Reactive Phosphorus as P      | 14265-44-2 | 2.5 mg/kg     | # Not<br>Determined     | 73.0          | 133      |



# QA/QC Compliance Assessment to assist with Quality Review

**Work Order** : **EM2115737** Page : 1 of 11

Client : SENVERSA PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : LUCINDA TRICKEY
 Telephone
 : +6138549 9645

 Project
 : M19067
 Date Samples Received
 : 10-Aug-2021

 Site
 : -- Issue Date
 : 24-Aug-2021

Sampler : James Horne, Kelley Cheney No. of samples received : 42
Order number : ---- No. of samples analysed : 38

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

# **Summary of Outliers**

# **Outliers: Quality Control Samples**

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Laboratory Control outliers occur.
- Duplicate outliers exist please see following pages for full details.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

## **Outliers: Analysis Holding Time Compliance**

• NO Analysis Holding Time Outliers exist.

### **Outliers: Frequency of Quality Control Samples**

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD

Project : M19067

**Outliers: Quality Control Samples** 

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

| Compound Group Name                                 | Laboratory Sample ID | Client Sample ID | Analyte               | CAS Number | Data       | Limits   | Comment                          |
|-----------------------------------------------------|----------------------|------------------|-----------------------|------------|------------|----------|----------------------------------|
| Duplicate (DUP) RPDs                                |                      |                  |                       |            |            |          |                                  |
| ED093S: Soluble Major Cations                       | EM2115737032         | SB10_0.5-0.6     | Calcium               | 7440-70-2  | 59.5 %     | 0% - 20% | RPD exceeds LOR based limits     |
| Matrix Spike (MS) Recoveries                        |                      |                  |                       |            |            |          |                                  |
| EK067G: Total Phosphorus as P by Discrete Analyser  | EM2115737022         | SB07_0.1-0.2     | Total Phosphorus as P |            | Not        |          | MS recovery not determined,      |
|                                                     |                      |                  |                       |            | Determined |          | background level greater than or |
|                                                     |                      |                  |                       |            |            |          | equal to 4x spike level.         |
| EK067G: Total Phosphorus as P by Discrete Analyser  | EM2115737023         | SB07_0.5-0.6     | Total Phosphorus as P |            | Not        |          | MS recovery not determined,      |
|                                                     |                      |                  |                       |            | Determined |          | background level greater than or |
|                                                     |                      |                  |                       |            |            |          | equal to 4x spike level.         |
| EK071G: Reactive Phosphorus as P by discrete analys | EM2115737023         | SB07_0.5-0.6     | Reactive Phosphorus   | 14265-44-2 | Not        |          | MS recovery not determined,      |
|                                                     |                      |                  | as P                  |            | Determined |          | background level greater than or |
|                                                     |                      |                  |                       |            |            |          | equal to 4x spike level.         |

# **Analysis Holding Time Compliance**

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL** Evaluation: × = Holding time breach ; ✓ = Within holding time.

| Method                                      | Sample Date | Extraction / Preparation |                    | Analysis   |               |                  |            |
|---------------------------------------------|-------------|--------------------------|--------------------|------------|---------------|------------------|------------|
| Container / Client Sample ID(s)             |             | Date extracted           | Due for extraction | Evaluation | Date analysed | Due for analysis | Evaluation |
| EA055: Moisture Content (Dried @ 105-110°C) |             |                          |                    |            |               |                  |            |
| Soil Glass Jar - Unpreserved (EA055)        |             |                          |                    |            |               |                  |            |

Page : 3 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD



| Matrix: SOIL                        |                       |             | Evaluation: × = Holding time breach ; ✓ = Within holdin |                        |            |               |                  |            |
|-------------------------------------|-----------------------|-------------|---------------------------------------------------------|------------------------|------------|---------------|------------------|------------|
| Method                              |                       | Sample Date | Ex                                                      | traction / Preparation |            |               | Analysis         |            |
| Container / Client Sample ID(s)     |                       |             | Date extracted                                          | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation |
| EA055: Moisture Content (Dried @ 10 | 95-110°C) - Continued |             |                                                         |                        |            |               |                  |            |
| SB01_0.1-0.2,                       | SB01_0.5-0.6,         | 10-Aug-2021 |                                                         |                        |            | 13-Aug-2021   | 24-Aug-2021      | ✓          |
| SB01_0.9-1.0,                       | SB01_1.1-1.2,         |             |                                                         |                        |            |               |                  | ·          |
| SB02_0.1-0.2,                       | SB02_0.5-0.6,         |             |                                                         |                        |            |               |                  |            |
| SB02_0.9-1.0,                       | SB02_1.9-2.0,         |             |                                                         |                        |            |               |                  |            |
| SB03_0.1-0.2,                       | SB03_0.5-0.6,         |             |                                                         |                        |            |               |                  |            |
| SB03_0.9-1.0,                       | SB03_1.4-2.0,         |             |                                                         |                        |            |               |                  |            |
| SB04_0.1-0.2,                       | SB04_0.5-0.6,         |             |                                                         |                        |            |               |                  |            |
| SB05_0.1-0.2,                       | SB05_0.5-0.6,         |             |                                                         |                        |            |               |                  |            |
| SB05_1.1-1.2,                       | SB06_0.1-0.2,         |             |                                                         |                        |            |               |                  |            |
| SB06_0.5-0.6,                       | SB06_1.0-1.1,         |             |                                                         |                        |            |               |                  |            |
| SB07_0.1-0.2,                       | SB07_0.5-0.6,         |             |                                                         |                        |            |               |                  |            |
| SB07_0.9-1.0,                       | SB07_1.5-1.5,         |             |                                                         |                        |            |               |                  |            |
| SB08_0.1-0.2,                       | SB08_0.5-0.6,         |             |                                                         |                        |            |               |                  |            |
| SB08_1.0-1.1,                       | SB09_0.0-0.1,         |             |                                                         |                        |            |               |                  |            |
| SB10_0.1-0.2,                       | SB10_0.5-0.6,         |             |                                                         |                        |            |               |                  |            |
| SB10_0.9-1.0,                       | SS01,                 |             |                                                         |                        |            |               |                  |            |
| SS02,                               | SS03,                 |             |                                                         |                        |            |               |                  |            |
| SS04,                               | SS05,                 |             |                                                         |                        |            |               |                  |            |
| QC01,                               | QC03                  |             |                                                         |                        |            |               |                  |            |
| ED042T: Total Sulfur by LECO        |                       |             |                                                         |                        |            |               |                  |            |
| Pulp Bag (ED042T)                   |                       |             |                                                         |                        |            |               |                  |            |
| SB01_0.1-0.2,                       | SB01_0.5-0.6,         | 10-Aug-2021 | 23-Aug-2021                                             | 06-Feb-2022            | ✓          | 23-Aug-2021   | 06-Feb-2022      | ✓          |
| SB01_0.9-1.0,                       | SB01_1.1-1.2,         |             |                                                         |                        |            |               |                  |            |
| SB02_0.1-0.2,                       | SB02_0.5-0.6,         |             |                                                         |                        |            |               |                  |            |
| SB02_0.9-1.0,                       | SB02_1.9-2.0,         |             |                                                         |                        |            |               |                  |            |
| SB03_0.1-0.2,                       | SB03_0.5-0.6,         |             |                                                         |                        |            |               |                  |            |
| SB03_0.9-1.0,                       | SB03_1.4-2.0,         |             |                                                         |                        |            |               |                  |            |
| SB04_0.1-0.2,                       | SB04_0.5-0.6,         |             |                                                         |                        |            |               |                  |            |
| SB05_0.1-0.2,                       | SB05_0.5-0.6,         |             |                                                         |                        |            |               |                  |            |
| SB05_1.1-1.2,                       | SB06_0.1-0.2,         |             |                                                         |                        |            |               |                  |            |
| SB06_0.5-0.6,                       | SB06_1.0-1.1,         |             |                                                         |                        |            |               |                  |            |
| SB07_0.1-0.2,                       | SB07_0.5-0.6,         |             |                                                         |                        |            |               |                  |            |
| SB07_0.9-1.0,                       | SB07_1.5-1.5,         |             |                                                         |                        |            |               |                  |            |
| SB08_0.1-0.2,                       | SB08_0.5-0.6,         |             |                                                         |                        |            |               |                  |            |
| SB08_1.0-1.1,                       | SB09_0.0-0.1,         |             |                                                         |                        |            |               |                  |            |
| SB10_0.1-0.2,                       | SB10_0.5-0.6,         |             |                                                         |                        |            |               |                  |            |
| SB10_0.9-1.0,                       | SS01,                 |             |                                                         |                        |            |               |                  |            |
| SS02,                               | SS03,                 |             |                                                         |                        |            |               |                  |            |
| SS04,                               | SS05,                 |             |                                                         |                        |            |               |                  |            |
| QC01,                               | QC03                  |             |                                                         |                        |            |               |                  |            |

Page : 4 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD



| Matrix: SOIL                           |                                |             |                |                        | Evaluation | n: 🗴 = Holding time | breach ; ✓ = Withi | n holding time |
|----------------------------------------|--------------------------------|-------------|----------------|------------------------|------------|---------------------|--------------------|----------------|
| Method                                 |                                | Sample Date | E              | traction / Preparation |            |                     | Analysis           |                |
| Container / Client Sample ID(s)        |                                |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation     |
| ED093S: Soluble Major Cations          |                                |             |                |                        |            |                     |                    |                |
| Soil Glass Jar - Unpreserved (ED093S)  |                                |             |                |                        |            |                     |                    |                |
| SB01_0.1-0.2,                          | SB01_0.5-0.6,                  | 10-Aug-2021 | 16-Aug-2021    | 06-Feb-2022            | ✓          | 17-Aug-2021         | 06-Feb-2022        | ✓              |
| SB01_0.9-1.0,                          | SB01_1.1-1.2,                  |             |                |                        |            |                     |                    |                |
| SB02_0.1-0.2,                          | SB02_0.5-0.6,                  |             |                |                        |            |                     |                    |                |
| SB02_0.9-1.0,                          | SB02_1.9-2.0,                  |             |                |                        |            |                     |                    |                |
| SB03_0.1-0.2,                          | SB03_0.5-0.6,                  |             |                |                        |            |                     |                    |                |
| SB03_0.9-1.0,                          | SB03_1.4-2.0,                  |             |                |                        |            |                     |                    |                |
| SB04_0.1-0.2,                          | SB04_0.5-0.6,                  |             |                |                        |            |                     |                    |                |
| SB05_0.1-0.2,                          | SB05_0.5-0.6,                  |             |                |                        |            |                     |                    |                |
| SB05_1.1-1.2,                          | SB06_0.1-0.2,                  |             |                |                        |            |                     |                    |                |
| SB06_0.5-0.6,                          | SB06_1.0-1.1,                  |             |                |                        |            |                     |                    |                |
| SB07_0.1-0.2,                          | SB07_0.5-0.6,                  |             |                |                        |            |                     |                    |                |
| SB07_0.9-1.0,                          | SB07_1.5-1.5,                  |             |                |                        |            |                     |                    |                |
| SB08_0.1-0.2,                          | SB08_0.5-0.6,                  |             |                |                        |            |                     |                    |                |
| SB08_1.0-1.1,                          | SB09_0.0-0.1,                  |             |                |                        |            |                     |                    |                |
| SB10_0.1-0.2,                          | SB10_0.5-0.6,                  |             |                |                        |            |                     |                    |                |
| SB10_0.9-1.0,                          | SS01,                          |             |                |                        |            |                     |                    |                |
| SS02,                                  | SS03,                          |             |                |                        |            |                     |                    |                |
| SS04,                                  | SS05,                          |             |                |                        |            |                     |                    |                |
| QC01,                                  | QC03                           |             |                |                        |            |                     |                    |                |
| EG005(ED093)T: Total Metals by ICP-AES |                                |             |                |                        |            |                     |                    |                |
| Soil Glass Jar - Unpreserved (EG005T)  |                                |             |                |                        |            |                     |                    |                |
| SB01_0.1-0.2,                          | SB01_0.5-0.6,                  | 10-Aug-2021 | 13-Aug-2021    | 06-Feb-2022            | ✓          | 13-Aug-2021         | 06-Feb-2022        | 1              |
| SB01_0.9-1.0,                          | SB01_1.1-1.2,                  |             |                |                        |            |                     |                    | ,              |
| SB02_0.1-0.2,                          | SB02_0.5-0.6,                  |             |                |                        |            |                     |                    |                |
| SB02 0.9-1.0,                          | SB02_1.9-2.0,                  |             |                |                        |            |                     |                    |                |
| SB03_0.1-0.2,                          | SB03_0.5-0.6,                  |             |                |                        |            |                     |                    |                |
| SB03 0.9-1.0,                          | SB03_1.4-2.0,                  |             |                |                        |            |                     |                    |                |
| SB04_0.1-0.2,                          | SB04_0.5-0.6,                  |             |                |                        |            |                     |                    |                |
| SB05_0.1-0.2,                          | SB05_0.5-0.6,                  |             |                |                        |            |                     |                    |                |
| SB05_1.1-1.2,                          | SB06_0.1-0.2,                  |             |                |                        |            |                     |                    |                |
| SB06 0.5-0.6,                          | SB06_1.0-1.1,                  |             |                |                        |            |                     |                    |                |
| SB07_0.1-0.2,                          | SB07_0.5-0.6,                  |             |                |                        |            |                     |                    |                |
| SB07_0.1-0.2,<br>SB07_0.9-1.0,         | SB07_0.5-0.0,<br>SB07_1.5-1.5, |             |                |                        |            |                     |                    |                |
| SB07_0.9-1.0,<br>SB08_0.1-0.2,         | SB07_1.5-1.5,<br>SB08_0.5-0.6, |             |                |                        |            |                     |                    |                |
| _                                      | _                              |             |                |                        |            |                     |                    |                |
| SB08_1.0-1.1,                          | SB09_0.0-0.1,                  |             |                |                        |            |                     |                    |                |
| SB10_0.1-0.2,                          | SB10_0.5-0.6,                  |             |                |                        |            |                     |                    |                |
| SB10_0.9-1.0,                          | SS01,                          |             |                |                        |            |                     |                    |                |
| SS02,                                  | SS03,                          |             |                |                        |            |                     |                    |                |
| SS04,                                  | SS05,                          |             |                |                        |            |                     |                    |                |
| QC01,                                  | QC03                           |             |                |                        |            |                     |                    |                |

Page : 5 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD



| Matrix: SOIL                              |                                |             |                |                        | Evaluation | ı: 🗴 = Holding time | breach ; ✓ = Withi | n holding time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------|--------------------------------|-------------|----------------|------------------------|------------|---------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Method                                    |                                | Sample Date | Ex             | traction / Preparation |            |                     | Analysis           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Container / Client Sample ID(s)           |                                |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| EK055: Ammonia as N                       |                                |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Soil Glass Jar - Unpreserved (EK055)      |                                |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB01_0.1-0.2,                             | SB01_0.5-0.6,                  | 10-Aug-2021 |                |                        |            | 13-Aug-2021         | 07-Sep-2021        | ✓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SB01_0.9-1.0,                             | SB01_1.1-1.2,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB02_0.1-0.2,                             | SB02_0.5-0.6,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB02_0.9-1.0,                             | SB02_1.9-2.0,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB03_0.1-0.2,                             | SB03_0.5-0.6,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB03_0.9-1.0,                             | SB03_1.4-2.0,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB04_0.1-0.2,                             | SB04_0.5-0.6,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB05_0.1-0.2,                             | SB05_0.5-0.6,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB05_1.1-1.2,                             | SB06_0.1-0.2,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB06_0.5-0.6,                             | SB06_1.0-1.1,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB07_0.1-0.2,                             | SB07_0.5-0.6,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB07_0.9-1.0,                             | SB07_1.5-1.5,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB08_0.1-0.2,                             | SB08_0.5-0.6,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB08_1.0-1.1,                             | SB09_0.0-0.1,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB10_0.1-0.2,                             | SB10_0.5-0.6,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB10_0.9-1.0,                             | SS01,                          |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS02,                                     | SS03,                          |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS04,                                     | SS05,                          |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| QC01,                                     | QC03                           |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EK057G: Nitrite as N by Discrete Analyser | 4000                           |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Soil Glass Jar - Unpreserved (EK057G)     |                                |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB01_0.1-0.2,                             | SB01_0.5-0.6,                  | 10-Aug-2021 | 16-Aug-2021    | 17-Aug-2021            | ✓          | 17-Aug-2021         | 18-Aug-2021        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SB01_0.9-1.0,                             | SB01_1.1-1.2,                  | _           |                | _                      | _          | _                   |                    | , The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the |
| SB02_0.1-0.2,                             | SB02_0.5-0.6,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB02 0.9-1.0,                             | SB02_1.9-2.0,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB03_0.1-0.2,                             | SB03_0.5-0.6,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB03 0.9-1.0,                             | SB03_1.4-2.0,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB04_0.1-0.2,                             | SB04_0.5-0.6,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB05_0.1-0.2,                             | SB05_0.5-0.6,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB05_1.1-1.2,                             | SB06_0.1-0.2,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB06 0.5-0.6,                             | SB06_1.0-1.1,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB07_0.1-0.2,                             | SB07_0.5-0.6,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB07_0.1-0.2,<br>SB07_0.9-1.0,            | SB07_1.5-1.5,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB07_0.9-1.0,<br>SB08_0.1-0.2,            | SB07_1.5-1.5,<br>SB08_0.5-0.6, |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB08_1.0-1.1,                             | SB09_0.0-0.1,                  |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB10_0.1-0.2,                             | SB09_0.0-0.1,<br>SB10_0.5-0.6, |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _                                         |                                |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SB10_0.9-1.0,                             | SS01,                          |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS02,                                     | SS03,                          |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SS04,                                     | SS05,                          |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| QC01,                                     | QC03                           |             |                |                        |            |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Page : 6 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD



| Matrix: <b>SOIL</b> Evaluation: × = Holding time breach ; ✓ = Within holding time |               |             |                |                        |            |               |                  |            |  |  |
|-----------------------------------------------------------------------------------|---------------|-------------|----------------|------------------------|------------|---------------|------------------|------------|--|--|
| Method                                                                            |               | Sample Date | Ex             | traction / Preparation |            |               | Analysis         |            |  |  |
| Container / Client Sample ID(s)                                                   |               |             | Date extracted | Due for extraction     | Evaluation | Date analysed | Due for analysis | Evaluation |  |  |
| EK059G: Nitrite plus Nitrate as N (NOx) by Discrete An                            | alyser        |             |                |                        |            |               |                  |            |  |  |
| Soil Glass Jar - Unpreserved (EK059G)                                             | •             |             |                |                        |            |               |                  |            |  |  |
| SB01_0.1-0.2,                                                                     | SB01_0.5-0.6, | 10-Aug-2021 | 16-Aug-2021    | 07-Sep-2021            | ✓          | 17-Aug-2021   | 18-Aug-2021      | ✓          |  |  |
| SB01_0.9-1.0,                                                                     | SB01_1.1-1.2, |             |                |                        |            |               |                  |            |  |  |
| SB02_0.1-0.2,                                                                     | SB02_0.5-0.6, |             |                |                        |            |               |                  |            |  |  |
| SB02_0.9-1.0,                                                                     | SB02_1.9-2.0, |             |                |                        |            |               |                  |            |  |  |
| SB03_0.1-0.2,                                                                     | SB03_0.5-0.6, |             |                |                        |            |               |                  |            |  |  |
| SB03_0.9-1.0,                                                                     | SB03_1.4-2.0, |             |                |                        |            |               |                  |            |  |  |
| SB04_0.1-0.2,                                                                     | SB04_0.5-0.6, |             |                |                        |            |               |                  |            |  |  |
| SB05_0.1-0.2,                                                                     | SB05_0.5-0.6, |             |                |                        |            |               |                  |            |  |  |
| SB05_1.1-1.2,                                                                     | SB06_0.1-0.2, |             |                |                        |            |               |                  |            |  |  |
| SB06_0.5-0.6,                                                                     | SB06_1.0-1.1, |             |                |                        |            |               |                  |            |  |  |
| SB07_0.1-0.2,                                                                     | SB07_0.5-0.6, |             |                |                        |            |               |                  |            |  |  |
| SB07_0.9-1.0,                                                                     | SB07_1.5-1.5, |             |                |                        |            |               |                  |            |  |  |
| SB08_0.1-0.2,                                                                     | SB08_0.5-0.6, |             |                |                        |            |               |                  |            |  |  |
| SB08_1.0-1.1,                                                                     | SB09_0.0-0.1, |             |                |                        |            |               |                  |            |  |  |
| SB10_0.1-0.2,                                                                     | SB10_0.5-0.6, |             |                |                        |            |               |                  |            |  |  |
| SB10_0.9-1.0,                                                                     | SS01,         |             |                |                        |            |               |                  |            |  |  |
| SS02,                                                                             | SS03,         |             |                |                        |            |               |                  |            |  |  |
| SS04,                                                                             | SS05,         |             |                |                        |            |               |                  |            |  |  |
| QC01,                                                                             | QC03          |             |                |                        |            |               |                  |            |  |  |
| EK061G: Total Kjeldahl Nitrogen By Discrete Analyser                              |               |             |                |                        |            |               |                  |            |  |  |
| Soil Glass Jar - Unpreserved (EK061G)                                             |               |             |                | 07.0                   |            |               | 40.0 0004        |            |  |  |
| SB01_0.1-0.2,                                                                     | SB01_0.5-0.6, | 10-Aug-2021 | 13-Aug-2021    | 07-Sep-2021            | ✓          | 13-Aug-2021   | 10-Sep-2021      | ✓          |  |  |
| SB01_0.9-1.0,                                                                     | SB01_1.1-1.2, |             |                |                        |            |               |                  |            |  |  |
| SB02_0.1-0.2,                                                                     | SB02_0.5-0.6, |             |                |                        |            |               |                  |            |  |  |
| SB02_0.9-1.0,                                                                     | SB02_1.9-2.0, |             |                |                        |            |               |                  |            |  |  |
| SB03_0.1-0.2,                                                                     | SB03_0.5-0.6, |             |                |                        |            |               |                  |            |  |  |
| SB03_0.9-1.0,                                                                     | SB03_1.4-2.0, |             |                |                        |            |               |                  |            |  |  |
| SB04_0.1-0.2,                                                                     | SB04_0.5-0.6, |             |                |                        |            |               |                  |            |  |  |
| SB05_0.1-0.2,                                                                     | SB05_0.5-0.6, |             |                |                        |            |               |                  |            |  |  |
| SB05_1.1-1.2,                                                                     | SB06_0.1-0.2, |             |                |                        |            |               |                  |            |  |  |
| SB06_0.5-0.6,                                                                     | SB06_1.0-1.1, |             |                |                        |            |               |                  |            |  |  |
| SB07_0.1-0.2,                                                                     | SB07_0.5-0.6, |             |                |                        |            |               |                  |            |  |  |
| SB07_0.9-1.0,                                                                     | SB07_1.5-1.5, |             |                |                        |            |               |                  |            |  |  |
| SB08_0.1-0.2,                                                                     | SB08_0.5-0.6, |             |                |                        |            |               |                  |            |  |  |
| SB08_1.0-1.1,                                                                     | SB09_0.0-0.1, |             |                |                        |            |               |                  |            |  |  |
| SB10_0.1-0.2,                                                                     | SB10_0.5-0.6, |             |                |                        |            |               |                  |            |  |  |
| SB10_0.9-1.0,                                                                     | SS01,         |             |                |                        |            |               |                  |            |  |  |
| SS02,                                                                             | SS03,         |             |                |                        |            |               |                  |            |  |  |
| SS04,                                                                             | SS05,         |             |                |                        |            |               |                  |            |  |  |
| QC01,                                                                             | QC03          |             |                |                        |            |               |                  |            |  |  |

Page : 7 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD



| Matrix: SOIL                          |                   |             |                |                        | Evaluation | ı: 🗴 = Holding time | breach ; ✓ = Withi | n holding tim |
|---------------------------------------|-------------------|-------------|----------------|------------------------|------------|---------------------|--------------------|---------------|
| Method                                |                   | Sample Date | Ex             | traction / Preparation |            |                     | Analysis           |               |
| Container / Client Sample ID(s)       |                   |             | Date extracted | Due for extraction     | Evaluation | Date analysed       | Due for analysis   | Evaluation    |
| EK067G: Total Phosphorus as P by Dis  | crete Analyser    |             |                |                        |            |                     |                    |               |
| Soil Glass Jar - Unpreserved (EK067G) |                   |             |                |                        |            |                     |                    |               |
| SB01_0.1-0.2,                         | SB01_0.5-0.6,     | 10-Aug-2021 | 13-Aug-2021    | 07-Sep-2021            | ✓          | 13-Aug-2021         | 10-Sep-2021        | ✓             |
| SB01_0.9-1.0,                         | SB01_1.1-1.2,     |             |                |                        |            |                     |                    |               |
| SB02_0.1-0.2,                         | SB02_0.5-0.6,     |             |                |                        |            |                     |                    |               |
| SB02_0.9-1.0,                         | SB02_1.9-2.0,     |             |                |                        |            |                     |                    |               |
| SB03_0.1-0.2,                         | SB03_0.5-0.6,     |             |                |                        |            |                     |                    |               |
| SB03_0.9-1.0,                         | SB03_1.4-2.0,     |             |                |                        |            |                     |                    |               |
| SB04_0.1-0.2,                         | SB04_0.5-0.6,     |             |                |                        |            |                     |                    |               |
| SB05_0.1-0.2,                         | SB05_0.5-0.6,     |             |                |                        |            |                     |                    |               |
| SB05_1.1-1.2,                         | SB06_0.1-0.2,     |             |                |                        |            |                     |                    |               |
| SB06_0.5-0.6,                         | SB06_1.0-1.1,     |             |                |                        |            |                     |                    |               |
| SB07_0.1-0.2,                         | SB07_0.5-0.6,     |             |                |                        |            |                     |                    |               |
| SB07_0.9-1.0,                         | SB07_1.5-1.5,     |             |                |                        |            |                     |                    |               |
| SB08_0.1-0.2,                         | SB08_0.5-0.6,     |             |                |                        |            |                     |                    |               |
| SB08_1.0-1.1,                         | SB09_0.0-0.1,     |             |                |                        |            |                     |                    |               |
| SB10_0.1-0.2,                         | SB10_0.5-0.6,     |             |                |                        |            |                     |                    |               |
| SB10_0.9-1.0,                         | SS01,             |             |                |                        |            |                     |                    |               |
| SS02,                                 | SS03,             |             |                |                        |            |                     |                    |               |
| SS04,                                 | SS05,             |             |                |                        |            |                     |                    |               |
| QC01,                                 | QC03              |             |                |                        |            |                     |                    |               |
| EK071G: Reactive Phosphorus as P by   | discrete analyser |             |                |                        |            |                     |                    |               |
| Soil Glass Jar - Unpreserved (EK071G) | •                 |             |                |                        |            |                     |                    |               |
| SB01_0.1-0.2,                         | SB01_0.5-0.6,     | 10-Aug-2021 | 16-Aug-2021    | 17-Aug-2021            | ✓          | 17-Aug-2021         | 18-Aug-2021        | ✓             |
| SB01_0.9-1.0,                         | SB01_1.1-1.2,     |             |                |                        |            |                     |                    |               |
| SB02_0.1-0.2,                         | SB02_0.5-0.6,     |             |                |                        |            |                     |                    |               |
| SB02_0.9-1.0,                         | SB02_1.9-2.0,     |             |                |                        |            |                     |                    |               |
| SB03_0.1-0.2,                         | SB03_0.5-0.6,     |             |                |                        |            |                     |                    |               |
| SB03_0.9-1.0,                         | SB03_1.4-2.0,     |             |                |                        |            |                     |                    |               |
| SB04_0.1-0.2,                         | SB04_0.5-0.6,     |             |                |                        |            |                     |                    |               |
| SB05_0.1-0.2,                         | SB05_0.5-0.6,     |             |                |                        |            |                     |                    |               |
| SB05_1.1-1.2,                         | SB06_0.1-0.2,     |             |                |                        |            |                     |                    |               |
| SB06_0.5-0.6,                         | SB06_1.0-1.1,     |             |                |                        |            |                     |                    |               |
| SB07_0.1-0.2,                         | SB07_0.5-0.6,     |             |                |                        |            |                     |                    |               |
| SB07_0.9-1.0,                         | SB07_1.5-1.5,     |             |                |                        |            |                     |                    |               |
| SB08_0.1-0.2,                         | SB08_0.5-0.6,     |             |                |                        |            |                     |                    |               |
| SB08_1.0-1.1,                         | SB09_0.0-0.1,     |             |                |                        |            |                     |                    |               |
| SB10_0.1-0.2,                         | SB10_0.5-0.6,     |             |                |                        |            |                     |                    |               |
| SB10_0.9-1.0,                         | SS01,             |             |                |                        |            |                     |                    |               |
| SS02,                                 | SS03,             |             |                |                        |            |                     |                    |               |
| SS04,                                 | SS05,             |             |                |                        |            |                     |                    |               |
| QC01,                                 | QC03              |             |                |                        |            |                     |                    |               |

Page 8 of 11 Work Order EM2115737

Client SENVERSA PTY LTD

M19067 Project



# **Quality Control Parameter Frequency Compliance**

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

| Matrix: SOIL                                          |        |    |         | Evaluatio | n: × = Quality Co | ntrol frequency | not within specification; ✓ = Quality Control frequency within specification |
|-------------------------------------------------------|--------|----|---------|-----------|-------------------|-----------------|------------------------------------------------------------------------------|
| Quality Control Sample Type                           |        | Co | ount    |           | Rate (%)          |                 | Quality Control Specification                                                |
| Analytical Methods                                    | Method | QC | Reaular | Actual    | Expected          | Evaluation      |                                                                              |
| Laboratory Duplicates (DUP)                           |        |    |         |           |                   |                 |                                                                              |
| Buchi Ammonia                                         | EK055  | 4  | 38      | 10.53     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Cations - soluble by ICP-AES                          | ED093S | 5  | 40      | 12.50     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Moisture Content                                      | EA055  | 4  | 40      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Nitrite and Nitrate as N (NOx)- Soluble by Discrete   | EK059G | 4  | 40      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Analyser                                              |        |    |         |           |                   |                 |                                                                              |
| Nitrite as N - Soluble by Discrete Analyser           | EK057G | 4  | 40      | 10.00     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Reactive Phosphorus as P-Soluble By Discrete Analyser | EK071G | 4  | 38      | 10.53     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Sulfur - Total as S (LECO)                            | ED042T | 4  | 38      | 10.53     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| TKN as N By Discrete Analyser                         | EK061G | 4  | 38      | 10.53     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Total Metals by ICP-AES                               | EG005T | 4  | 38      | 10.53     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Total Phosporus By Discrete Analyser                  | EK067G | 5  | 39      | 12.82     | 10.00             | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Laboratory Control Samples (LCS)                      |        |    |         |           |                   |                 |                                                                              |
| Buchi Ammonia                                         | EK055  | 2  | 38      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Cations - soluble by ICP-AES                          | ED093S | 2  | 40      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Nitrite and Nitrate as N (NOx)- Soluble by Discrete   | EK059G | 2  | 40      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Analyser                                              |        |    |         |           |                   |                 |                                                                              |
| Nitrite as N - Soluble by Discrete Analyser           | EK057G | 2  | 40      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Reactive Phosphorus as P-Soluble By Discrete Analyser | EK071G | 2  | 38      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Sulfur - Total as S (LECO)                            | ED042T | 2  | 38      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| TKN as N By Discrete Analyser                         | EK061G | 2  | 38      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Total Metals by ICP-AES                               | EG005T | 2  | 38      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Total Phosporus By Discrete Analyser                  | EK067G | 3  | 39      | 7.69      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Method Blanks (MB)                                    |        |    |         |           |                   |                 |                                                                              |
| Buchi Ammonia                                         | EK055  | 2  | 38      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Cations - soluble by ICP-AES                          | ED093S | 2  | 40      | 5.00      | 5.00              | <b>√</b>        | NEPM 2013 B3 & ALS QC Standard                                               |
| Nitrite and Nitrate as N (NOx)- Soluble by Discrete   | EK059G | 2  | 40      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Analyser                                              |        |    |         |           |                   |                 |                                                                              |
| Nitrite as N - Soluble by Discrete Analyser           | EK057G | 2  | 40      | 5.00      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Reactive Phosphorus as P-Soluble By Discrete Analyser | EK071G | 2  | 38      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Sulfur - Total as S (LECO)                            | ED042T | 2  | 38      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| TKN as N By Discrete Analyser                         | EK061G | 2  | 38      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Total Metals by ICP-AES                               | EG005T | 2  | 38      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Total Phosporus By Discrete Analyser                  | EK067G | 3  | 39      | 7.69      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |
| Matrix Spikes (MS)                                    |        |    |         |           |                   |                 |                                                                              |
| Buchi Ammonia                                         | EK055  | 2  | 38      | 5.26      | 5.00              | ✓               | NEPM 2013 B3 & ALS QC Standard                                               |

Page : 9 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD



| Matrix: SOIL                                          |        |    |         | Evaluation | n: × = Quality Co | ntrol frequency n | ot within specification ; ✓ = Quality Control frequency within specification. |
|-------------------------------------------------------|--------|----|---------|------------|-------------------|-------------------|-------------------------------------------------------------------------------|
| Quality Control Sample Type                           |        | Co | unt     |            | Rate (%)          |                   | Quality Control Specification                                                 |
| Analytical Methods                                    | Method | QC | Reaular | Actual     | Expected          | Evaluation        |                                                                               |
| Matrix Spikes (MS) - Continued                        |        |    |         |            |                   |                   |                                                                               |
| Nitrite and Nitrate as N (NOx)- Soluble by Discrete   | EK059G | 2  | 40      | 5.00       | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Analyser                                              |        |    |         |            |                   |                   |                                                                               |
| Nitrite as N - Soluble by Discrete Analyser           | EK057G | 2  | 40      | 5.00       | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Reactive Phosphorus as P-Soluble By Discrete Analyser | EK071G | 2  | 38      | 5.26       | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| TKN as N By Discrete Analyser                         | EK061G | 2  | 38      | 5.26       | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Metals by ICP-AES                               | EG005T | 2  | 38      | 5.26       | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |
| Total Phosporus By Discrete Analyser                  | EK067G | 3  | 39      | 7.69       | 5.00              | ✓                 | NEPM 2013 B3 & ALS QC Standard                                                |

Page : 10 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD

Project : M19067



# **Brief Method Summaries**

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

| Analytical Methods                                           | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------|-------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Moisture Content                                             | EA055       | SOIL   | In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).                                                                                                                                                                                                                                      |
| Sulfur - Total as S (LECO)                                   | ED042T      | SOIL   | In house: Dried and pulverised sample is combusted in a high temperature furnace in the presence of strong oxidants / catalysts. The evolved S (as SO2) is measured by infra-red detector                                                                                                                                                                                                        |
| Cations - soluble by ICP-AES                                 | ED093S      | SOIL   | In house: Referenced to APHA 3120; USEPA SW 846 - 6010 (ICPAES) Water extracts of the soil are analyzed for major cations by ICPAES. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3). |
| Total Metals by ICP-AES                                      | EG005T      | SOIL   | In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)    |
| Buchi Ammonia                                                | EK055       | SOIL   | In house: Referenced to APHA 4500-NH3 B&G, H Samples are steam distilled (Buchi) prior to analysis and quantified using titration, FIA or Discrete Analyser.                                                                                                                                                                                                                                     |
| Nitrite as N - Soluble by Discrete Analyser                  | EK057G      | SOIL   | In house: Referenced to APHA 4500-NO3- B. Nitrite in a water extract is determined by direct colourimetry by Discrete Analyser.                                                                                                                                                                                                                                                                  |
| Nitrate as N - Soluble by Discrete<br>Analyser               | EK058G      | SOIL   | In house: Referenced to APHA 4500-NO3- F. Nitrate in the 1:5 soil:water extract is reduced to nitrite by way of a chemical reduction followed by quantification by Discrete Analyser. Nitrite is determined seperately by direct colourimetry and result for Nitrate calculated as the difference between the two results.                                                                       |
| Nitrite and Nitrate as N (NOx)- Soluble by Discrete Analyser | EK059G      | SOIL   | In house: Thermo Scientific Method D08727 and NEMI (National Environmental Method Index) Method ID: 9171.  This method covers the determination of total oxidised nitrogen (NOx-N) and nitrate (NO3-N) by calculation,  Combined oxidised Nitrogen (NO2+NO3) in a water extract is determined by direct colourimetry by Discrete  Analyser.                                                      |
| TKN as N By Discrete Analyser                                | EK061G      | SOIL   | In house: Referenced to APHA 4500-Norg-D Soil samples are digested using Kjeldahl digestion followed by determination by Discrete Analyser.                                                                                                                                                                                                                                                      |
| Total Nitrogen as N (TKN + NOx) By Discrete Analyser         | EK062G      | SOIL   | In house: Referenced to APHA 4500 Norg/NO3- Total Nitrogen is determined as the sum of TKN and Oxidised Nitrogen, each determined seperately as N.                                                                                                                                                                                                                                               |
| Total Phosporus By Discrete Analyser                         | EK067G      | SOIL   | In house: Referenced to APHA 4500 P-B&F This procedure involves sulfuric acid digestion and quantification using Discrete Analyser.                                                                                                                                                                                                                                                              |
| Reactive Phosphorus as P-Soluble By Discrete Analyser        | EK071G      | SOIL   | In house: Referenced to APHA 4500 P-F Ammonium molybdate and potassium antimonyl tartrate reacts in acid medium with othophosphate to form a heteropoly acid -phosphomolybdic acid - which is reduced to intensely coloured molybdenum blue by ascorbic acid. Quantification is by Discrete Analyser. This method is compliant with NEPM Schedule B(3).                                          |
| Preparation Methods                                          | Method      | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                              |
| TKN/TP Digestion                                             | EK061/EK067 | SOIL   | In house: Referenced to APHA 4500 Norg- D; APHA 4500 P - H. Macro Kjeldahl digestion.                                                                                                                                                                                                                                                                                                            |

Page : 11 of 11 Work Order : EM2115737

Client : SENVERSA PTY LTD



| Preparation Methods                                        | Method | Matrix | Method Descriptions                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------|--------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1:5 solid / water leach for soluble analytes               | EN34   | SOIL   | 10 g of soil is mixed with 50 mL of reagent grade water and tumbled end over end for 1 hour. Water soluble salts are leached from the soil by the continuous suspension. Samples are settled and the water filtered off for analysis.                                                                                                                                                                |
| Hot Block Digest for metals in soils sediments and sludges | EN69   | SOIL   | In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3). |
| Dry and Pulverise (up to 100g)                             | GEO30  | SOIL   | #                                                                                                                                                                                                                                                                                                                                                                                                    |

### senversa

# **Chain of Custody Documentation**



| Senverse Pty L                 | T(d                                                  |                          |                                         | Laboratory: mg//Eurotins VIC                          |                                                                       |                                                   |                                  | 19                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    | Analy                            | sis Required      |            |                                                                                      |
|--------------------------------|------------------------------------------------------|--------------------------|-----------------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|----------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------|-------------------|------------|--------------------------------------------------------------------------------------|
| www.senversa.<br>ABN 89 132 23 |                                                      |                          |                                         | Address:<br>Contact:<br>Phone:                        | Sample Raceipt                                                        |                                                   | ,688                             |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sahi                                                                               |                                  |                   |            | Commonts; e.g. Highly contaminated samp<br>hezardous materials present; trace LCRs e |
| Job Number:                    |                                                      |                          | 19067                                   | Purchase Order:                                       |                                                                       |                                                   | Copper, Manganese                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Amerovie, mitito, n teato, total Igaldahi<br>nikogen, fotal and reactive phosphona |                                  |                   |            |                                                                                      |
| Project Name:                  |                                                      | Proliminary Sile In      | vestigation - Little River              |                                                       |                                                                       |                                                   | 2                                |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | inc p                                                                              |                                  |                   |            |                                                                                      |
| Sampled By:                    |                                                      |                          | ney/James Home                          | Turn Around Time:                                     | Standar                                                               | rd                                                | 1 g                              |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Falc                                                                               |                                  |                   |            |                                                                                      |
| Project Manag                  | DE:                                                  |                          | ida Trickey                             | Page:                                                 | 3                                                                     | of 3                                              | 1 E E                            |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ile, n                                                                             |                                  |                   |            |                                                                                      |
| Email Report T                 |                                                      |                          |                                         | Phone/Mobile:                                         | G424 172                                                              |                                                   | Boron, Cadrillu<br>Melybdenum, 2 |                       | Calions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a, milu<br>total                                                                   |                                  |                   |            |                                                                                      |
| Ecutari Kehori 1               | ψ.                                                   | Sample Informat          | ion                                     | Phonesinobile.                                        | Container Into                                                        |                                                   | G G                              | 5                     | ్ద్ర                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gen,                                                                               |                                  |                   |            |                                                                                      |
| Lab ID                         | Sample ID                                            | Matrix *                 | Date                                    | Time                                                  | Type / Code                                                           | Total Bottles                                     | See.                             | Sulfur                | M<br>SQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ame                                                                                |                                  |                   | HOLD       |                                                                                      |
| ->                             | 0,002                                                | Sul                      | 10/08/2021                              | AN                                                    | Glass Jar                                                             | 1                                                 | X                                | Х                     | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х                                                                                  |                                  |                   |            | Forward to Eurofins                                                                  |
| ta .                           | QG03                                                 | 864                      | 10/09/2021                              | AM                                                    | Glass Jar                                                             | 1                                                 | X                                | Х                     | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Х                                                                                  |                                  |                   |            |                                                                                      |
| <b>→&gt;</b>                   | QC04                                                 | Sail                     | 10/03/2021                              | AM                                                    | Glass Jar                                                             | 1                                                 | X                                | Х                     | Х                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | X                                                                                  |                                  |                   |            | Forward to Eurofins                                                                  |
| 42                             | QC05                                                 | Suil                     | 10/08/2021                              | ΑV                                                    | Metals Water Jar                                                      | 2                                                 |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  |                   |            |                                                                                      |
|                                |                                                      |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  |                   |            |                                                                                      |
|                                |                                                      |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  |                   |            |                                                                                      |
|                                |                                                      |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  |                   |            |                                                                                      |
|                                | =                                                    |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  |                   |            |                                                                                      |
|                                |                                                      |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  |                   |            |                                                                                      |
|                                |                                                      |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  |                   |            |                                                                                      |
|                                |                                                      |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  |                   |            |                                                                                      |
|                                |                                                      |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  | 131               | 9 7 3      | p-                                                                                   |
|                                |                                                      |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  | 1                 | 1          |                                                                                      |
|                                |                                                      |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  | -                 | 1          |                                                                                      |
|                                |                                                      |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  |                   | 7.         |                                                                                      |
|                                |                                                      |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  |                   | 1          |                                                                                      |
|                                |                                                      |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  | -0                |            |                                                                                      |
|                                |                                                      |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  | 5/-               |            |                                                                                      |
|                                |                                                      |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  |                   | -          |                                                                                      |
|                                |                                                      |                          |                                         |                                                       |                                                                       |                                                   |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  |                   |            |                                                                                      |
| Tetal                          |                                                      | /                        |                                         |                                                       |                                                                       | 5                                                 |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    |                                  |                   |            |                                                                                      |
|                                | st that proper field samp<br>were used during the co |                          |                                         | rsa standard procedur                                 | es and/or project                                                     | Sampler Name:                                     |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    | Signature:                       |                   | Date:      |                                                                                      |
| Palinanishad R                 | y: Mitika                                            |                          |                                         |                                                       | Method of Shipment (If ap                                             | plicable):                                        |                                  |                       | Receive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ad hu                                                                              |                                  |                   |            | 7.7                                                                                  |
| Name/Signaturo                 |                                                      |                          |                                         | Date: 12/8/74                                         | Camler / Reference #:                                                 | - Pro-American                                    |                                  |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                    | Scott                            |                   |            | Date: 10/8/21                                                                        |
| 55                             | ALS                                                  |                          |                                         | Tima:                                                 | Date/Time:                                                            |                                                   |                                  |                       | Qf:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                    | AZ5                              |                   |            | Time: 165c                                                                           |
| Name/Signature                 | :                                                    |                          |                                         | Dale:                                                 | Carrier / Reference #:                                                |                                                   |                                  |                       | - Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carrier and Carr | gnature                                                                            |                                  |                   |            | Date:                                                                                |
| Of:                            |                                                      |                          |                                         | Time:                                                 | Date/Time:                                                            |                                                   |                                  |                       | OI:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                    |                                  |                   |            | ī me:                                                                                |
| Name/Signature                 | :                                                    |                          |                                         | Date:<br>Time:                                        | Carrier / Reference #:<br>Date/T-me:                                  |                                                   |                                  |                       | Name/S<br>Of.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | lignsture                                                                          |                                  |                   |            | Date:                                                                                |
| OI.                            | or Container Codes: P = 1                            | Inpreserved Plastic: N = | • Nario Acid (HAO <sub>4</sub> ) Preser | 1                                                     |                                                                       | tycroxide (NaOHVCad                               | millim (Co                       | i) Preser             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Socium Hs                                                                          | droxide Preserved Flastro; STH = | Sode m thasulfale | Mesanned n | l'ime.                                                                               |
| V = 1                          | yQA Vial Hydochloric Apic (I                         | (CI) Preserved; VS = VC  | A Via Sulphuric Preserve                | d; VSA - Sulphuric Prese<br>Preserved Balties; SF - 5 | rve3 Amber Glase, Hir HCI Proc<br>Sterile Buttle; UA in Unpreserved . | served Plastic; IHS = /-<br>Arnaer Glass; [=_ugaf | Cl Preser<br>'s iodine p         | ved Spe<br>preactive: | ciation Bot<br>d white pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ile; SP =<br>stic boltle                                                           |                                  |                   |            | M19067 COC Serv                                                                      |
| andn na.                       |                                                      |                          |                                         | Donalis                                               | a recol L                                                             | . H1C                                             | - ft /                           | 0/2                   | 1 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.1                                                                                |                                  |                   |            | W.19001_000_86D                                                                      |

Analysis recal by ALS 11/8/21, 11.11.

M19067\_COC\_Serversa



ABN: 50 005 085 521

www.eurofins.com.au

EnviroSales@eurofins.com

**New Zealand** 

Australia

Melbourne 6 Monterey Road Dandenong South VIC 3175 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254

Sydney Unit F3. Building F 16 Mars Road NATA # 1261 Site # 18217

NATA # 1261 Site # 4001 1/21 Smallwood Place NATA # 1261 Site # 20794

46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079

Christchurch Auckland 35 O'Rorke Road Penrose, Auckland 1061 Phone: +64 9 526 45 51 IANZ # 1327 IANZ # 1290

43 Detroit Drive Rolleston, Christchurch 7675 Phone: 0800 856 450

# Sample Receipt Advice

Company name: Contact name:

Senversa Pty Ltd VIC Lucinda Trickey

Project name:

PREMILINARY SITE INVESTIGATION - LITTLE RIVER

Project ID:

M19067

Turnaround time:

5 Day Aug 13, 2021 7:30 AM

Date/Time received **Eurofins reference** 

816742

### Sample Information

A detailed list of analytes logged into our LIMS, is included in the attached summary table.

Sample Temperature of a random sample selected from the batch as recorded by Eurofins Sample Receipt: 3.6 degrees Celsius.

All samples have been received as described on the above COC.

COC has been completed correctly.

Attempt to chill was evident.

Appropriately preserved sample containers have been used.

All samples were received in good condition.

Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.

Appropriate sample containers have been used.

Sample containers for volatile analysis received with zero headspace.

Split sample sent to requested external lab.

Some samples have been subcontracted.

N/A Custody Seals intact (if used).

# **Notes**

### Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Harry Bacalis on phone: or by email: HarryBacalis@eurofins.com

Results will be delivered electronically via email to Lucinda Trickey - Lucinda. Trickey @senversa.com.au.

Note: A copy of these results will also be delivered to the general Senversa Pty Ltd VIC email address.





Australia

Melbourne Sydney
6 Monterey Road Unit F3, Buildin
Dandenong South VIC 3175
Phone: +61 3 8564 5000
NATA # 1261 Site # 1254
Phone: +61 2:

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 
 Auckland
 Christchurch

 35 O'Rorke Road
 43 Detroit Drive

 Penrose, Auckland 1061
 Rolleston, Christchurch 7675

 Phone : +64 9 526 45 51
 Phone : 0800 856 450

 IANZ # 1327
 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Company Name:

Senversa Pty Ltd VIC Level 6, 15 William St

Melbourne

VIC 3000

Project Name:

Address:

PREMILINARY SITE INVESTIGATION - LITTLE RIVER

Project ID:

M19067

Order No.: Report #:

816742 9606 0070

Phone: Fax:

**Received:** Aug 13, 2021 7:30 AM **Due:** Aug 20, 2021

**Priority:** 5 Day

Contact Name: Lucinda Trickey

**Eurofins Analytical Services Manager: Harry Bacalis** 

New Zealand

|      | Sample Detail  Melbourne Laboratory - NATA Site # 1254 |                 |                  |        |             | Ammonia (as N) | Boron | Cadmium | Copper | Manganese | Molybdenum | Nitrate (as N) | Nitrite (as N) | Phosphorus | Phosphorus reactive (as P) | Sulphur | Total Kjeldahl Nitrogen (as N) | Zinc | Alkali Metals | Moisture Set |
|------|--------------------------------------------------------|-----------------|------------------|--------|-------------|----------------|-------|---------|--------|-----------|------------|----------------|----------------|------------|----------------------------|---------|--------------------------------|------|---------------|--------------|
| Melb | ourne Laborate                                         | ory - NATA Site | # 1254           |        |             | Х              | Х     | Х       | Х      | Х         | Х          | Х              | Х              | Х          | Х                          | Х       | Х                              | Х    | Х             | Х            |
| Sydı | ney Laboratory                                         | - NATA Site # 1 | 8217             |        |             |                |       |         |        |           |            |                |                |            |                            |         |                                |      |               |              |
|      | bane Laborator                                         |                 |                  |        |             |                |       |         |        |           |            |                |                |            |                            |         |                                |      |               |              |
|      | h Laboratory - N                                       |                 |                  |        |             |                |       |         |        |           |            |                |                |            |                            |         |                                |      |               |              |
|      | field Laboratory                                       |                 | 25079            |        |             |                |       |         |        |           |            |                |                |            |                            |         |                                |      |               |              |
| Exte | External Laboratory                                    |                 |                  |        | 1           |                |       |         |        |           |            |                |                |            |                            |         |                                |      |               |              |
| No   | Sample ID                                              | Sample Date     | Sampling<br>Time | Matrix | LAB ID      |                |       |         |        |           |            |                |                |            |                            |         |                                |      |               |              |
| 1    | QC02                                                   | Aug 10, 2021    |                  | Soil   | M21-Au23633 | Х              | Х     | Х       | Х      | Х         | Х          | Х              | Х              | Х          | Х                          | Х       | Х                              | Х    | Х             | Х            |
| 2    | QC04 Aug 10, 2021 Soil M21-Au23634                     |                 |                  |        |             | Х              | Х     | Х       | Х      | Х         | Х          | Х              | Х              | Х          | Х                          | Х       | Х                              | Х    | Х             | Х            |
| Test | est Counts                                             |                 |                  |        |             | 2              | 2     | 2       | 2      | 2         | 2          | 2              | 2              | 2          | 2                          | 2       | 2                              | 2    | 2             | 2            |



Senversa Pty Ltd VIC Level 6, 15 William St Melbourne VIC 3000





NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Lucinda Trickey

Report 816742-S

Project name PREMILINARY SITE INVESTIGATION - LITTLE RIVER

Project ID M19067
Received Date Aug 13, 2021

|                                |     |       |              | i            |
|--------------------------------|-----|-------|--------------|--------------|
| Client Sample ID               |     |       | QC02         | QC04         |
| Sample Matrix                  |     |       | Soil         | Soil         |
| Eurofins Sample No.            |     |       | M21-Au23633  | M21-Au23634  |
| Date Sampled                   |     |       | Aug 10, 2021 | Aug 10, 2021 |
| Test/Reference                 | LOR | Unit  |              |              |
|                                |     |       |              |              |
| Ammonia (as N)                 | 5   | mg/kg | 5.9          | < 5          |
| Nitrate (as N)                 | 5   | mg/kg | < 5          | < 5          |
| Nitrite (as N)                 | 5   | mg/kg | < 5          | < 5          |
| Phosphorus reactive (as P)     | 10  | mg/kg | < 10         | 39           |
| Total Kjeldahl Nitrogen (as N) | 10  | mg/kg | 150          | 880          |
| Phosphorus                     | 5   | mg/kg | 45           | 4200         |
| Sulphur                        | 5   | mg/kg | 28           | 39000        |
| % Moisture                     | 1   | %     | 4.2          | 9.9          |
| Heavy Metals                   |     |       |              |              |
| Boron                          | 10  | mg/kg | < 10         | < 10         |
| Cadmium                        | 0.4 | mg/kg | < 0.4        | 1.8          |
| Copper                         | 5   | mg/kg | 10           | < 5          |
| Manganese                      | 5   | mg/kg | 200          | 71           |
| Molybdenum                     | 5   | mg/kg | < 5          | < 5          |
| Zinc                           | 5   | mg/kg | 30           | 15           |
| Alkali Metals                  |     |       |              |              |
| Calcium                        | 5   | mg/kg | 620          | 63000        |
| Magnesium                      | 5   | mg/kg | 4600         | 800          |
| Potassium                      | 5   | mg/kg | 4200         | 1500         |
| Sodium                         | 5   | mg/kg | 120          | 390          |



### **Sample History**

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

| Description                                                                   | Testing Site | Extracted    | <b>Holding Time</b> |
|-------------------------------------------------------------------------------|--------------|--------------|---------------------|
| Ammonia (as N)                                                                | Melbourne    | Aug 13, 2021 | 28 Days             |
| - Method: APHA 4500-NH3 Ammonia Nitrogen by FIA                               |              |              |                     |
| Nitrate (as N)                                                                | Melbourne    | Aug 13, 2021 | 28 Days             |
| - Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA                         |              |              |                     |
| Nitrite (as N)                                                                | Melbourne    | Aug 13, 2021 | 28 Days             |
| - Method: LTM-INO-4120 Analysis of NOx NO2 NH3 by FIA                         |              |              |                     |
| Phosphorus reactive (as P)                                                    | Melbourne    | Aug 13, 2021 | 28 Days             |
| - Method: APHA 4500-P                                                         |              |              |                     |
| Total Kjeldahl Nitrogen (as N)                                                | Melbourne    | Aug 13, 2021 | 28 Days             |
| - Method: APHA 4500-Norg B,D Total Kjeldahl Nitrogen by FIA                   |              |              |                     |
| Phosphorus                                                                    | Melbourne    | Aug 13, 2021 | 180 Days            |
| - Method: LTM-MET-3010 Alkali Metals Sulfur Silicon and Phosphorus by ICP-AES |              |              |                     |
| Sulphur                                                                       | Melbourne    | Aug 13, 2021 | 7 Days              |
| - Method: LTM-MET-3010 Alkali Metals Sulfur Silicon and Phosphorus by ICP-AES |              |              |                     |
| Heavy Metals                                                                  | Melbourne    | Aug 13, 2021 | 180 Days            |
| - Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS          |              |              |                     |
| Alkali Metals                                                                 | Melbourne    | Aug 13, 2021 | 180 Days            |
| - Method: LTM-MET-3010 Alkali Metals Sulfur Silicon Phosphorus by ICP-AES     |              |              |                     |
| % Moisture                                                                    | Melbourne    | Aug 13, 2021 | 14 Days             |
| - Method: LTM-GEN-7080 Moisture                                               |              |              |                     |

Report Number: 816742-S



**Company Name:** 

# **Environment Testing**

Australia

 Melbourne
 Sydney

 6 Monterey Road
 Unit F3, Buildin

 Dandenong South VIC 3175
 16 Mars Road

 Phone : +61 3 8564 5000
 Lane Cove We

 NATA # 1261 Site # 1254
 Phone : +61 2 \*\*

Order No.:

Report #:

Perth 46-48 Banksia Road Welshpool WA 6106 Phone: +61 8 9251 9600 NATA # 1261 Site # 23736 Newcastle 4/52 Industrial Drive Mayfield East NSW 2304 PO Box 60 Wickham 2293 Phone: +61 2 4968 8448 NATA # 1261 Site # 25079 
 Auckland
 Christchurch

 35 O'Rorke Road
 43 Detroit Drive

 Penrose, Auckland 1061
 Rolleston, Christchurch 7675

 Phone : +64 9 526 45 51
 Phone : 0800 856 450

 IANZ # 1327
 IANZ # 1290

ABN: 50 005 085 521 web: www.eurofins.com.au email: EnviroSales@eurofins.com

Senversa Pty Ltd VIC

Address: Level 6, 15 William St

Melbourne

VIC 3000

**Project Name:** PREMILINARY SITE INVESTIGATION - LITTLE RIVER

Project ID: M19067

Phone: Fax: 816742 9606 0070

Priority: Contact Name:

Due:

Received:

**Eurofins Analytical Services Manager: Harry Bacalis** 

5 Day

New Zealand

Aug 13, 2021 7:30 AM

Aug 20, 2021

Lucinda Trickey

|      | Sample Detail  Melbourne Laboratory - NATA Site # 1254 |                   |                  |        |             | Ammonia (as N) | Boron | Cadmium | Copper | Manganese | Molybdenum | Nitrate (as N) | Nitrite (as N) | Phosphorus | Phosphorus reactive (as P) | Sulphur | Total Kjeldahl Nitrogen (as N) | Zinc | Alkali Metals | Moisture Set |
|------|--------------------------------------------------------|-------------------|------------------|--------|-------------|----------------|-------|---------|--------|-----------|------------|----------------|----------------|------------|----------------------------|---------|--------------------------------|------|---------------|--------------|
| Melk | ourne Laborato                                         | ory - NATA Site   | # 1254           |        |             | Х              | Х     | Х       | Х      | Х         | Х          | Х              | Х              | Х          | Х                          | Х       | Х                              | Х    | Х             | Х            |
| Sydı | ney Laboratory                                         | - NATA Site # 1   | 8217             |        |             |                |       |         |        |           |            |                |                |            |                            |         |                                |      |               |              |
| Bris | bane Laborator                                         | y - NATA Site #   | 20794            |        |             |                |       |         |        |           |            |                |                |            |                            |         |                                |      |               |              |
|      | h Laboratory - N                                       |                   |                  |        |             |                |       |         |        |           |            |                |                |            |                            |         |                                |      |               |              |
| May  | field Laboratory                                       | · - NATA Site # 2 | 25079            |        |             |                |       |         |        |           |            |                |                |            |                            |         |                                |      |               |              |
| Exte | External Laboratory                                    |                   |                  |        |             |                |       |         |        |           |            |                |                |            |                            |         |                                |      |               |              |
| No   | Sample ID                                              | Sample Date       | Sampling<br>Time | Matrix | LAB ID      |                |       |         |        |           |            |                |                |            |                            |         |                                |      |               |              |
| 1    | QC02                                                   | Aug 10, 2021      |                  | Soil   | M21-Au23633 | Х              | Х     | Х       | Х      | Х         | Х          | Х              | Х              | Х          | Х                          | Х       | Х                              | Х    | Х             | Χ            |
| 2    | QC04                                                   | Aug 10, 2021      |                  | Soil   | M21-Au23634 | Χ              | Х     | Х       | Х      | Х         | Х          | Х              | Х              | Х          | Х                          | Х       | Х                              | Х    | Х             | Х            |
| Test | est Counts                                             |                   |                  |        |             | 2              | 2     | 2       | 2      | 2         | 2          | 2              | 2              | 2          | 2                          | 2       | 2                              | 2    | 2             | 2            |



### **Internal Quality Control Review and Glossary**

#### General

- Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise.
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer, that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

### **Holding Times**

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

\*\*NOTE: pH duplicates are reported as a range NOT as RPD

#### Units

mg/kg: milligrams per kilogram ug/L: micrograms per litre ug/L: micrograms per litre

org/100mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100mL: Most Probable Number of organisms per 100 millilitres

### **Terms**

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery.

CRM Certified Reference Material - reported as percent recovery.

Method Blank In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

**Surr - Surrogate** The addition of a like compound to the analyte target and reported as percentage recovery.

**Duplicate** A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

USEPA United States Environmental Protection Agency

APHA American Public Health Association
TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

QSM US Department of Defense Quality Systems Manual Version 5.3

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

TEQ Toxic Equivalency Quotient

### QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50%  $\,$ 

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 20-130% Phenols & 50-150% PFASs

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.3 where no positive PFAS results have been reported have been reviewed and no data was affected.

WA DWER (n=10): PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

### **QC Data General Comments**

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

  Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.



### **Quality Control Results**

| Test                           |               |              | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
|--------------------------------|---------------|--------------|-------|----------|----------|-----|----------------------|----------------|--------------------|
| Method Blank                   |               |              |       |          |          |     |                      |                |                    |
| Phosphorus reactive (as P)     |               |              | mg/kg | < 10     |          |     | 10                   | Pass           |                    |
| Method Blank                   |               |              |       |          |          |     |                      |                |                    |
| Heavy Metals                   |               |              |       |          |          |     |                      |                |                    |
| Boron                          |               |              | mg/kg | < 10     |          |     | 10                   | Pass           |                    |
| Cadmium                        |               |              | mg/kg | < 0.4    |          |     | 0.4                  | Pass           |                    |
| Copper                         |               |              | mg/kg | < 5      |          |     | 5                    | Pass           |                    |
| Manganese                      |               |              | mg/kg | < 5      |          |     | 5                    | Pass           |                    |
| Molybdenum                     |               |              | mg/kg | < 5      |          |     | 5                    | Pass           |                    |
| Zinc                           |               |              | mg/kg | < 5      |          |     | 5                    | Pass           |                    |
| LCS - % Recovery               |               |              |       |          |          |     |                      |                |                    |
| Heavy Metals                   |               |              |       |          |          |     |                      |                |                    |
| Boron                          |               |              | %     | 111      |          |     | 80-120               | Pass           |                    |
| Cadmium                        |               |              | %     | 102      |          |     | 80-120               | Pass           |                    |
| Copper                         |               |              | %     | 111      |          |     | 80-120               | Pass           |                    |
| Manganese                      |               |              | %     | 111      |          |     | 80-120               | Pass           |                    |
| Molybdenum                     |               |              | %     | 110      |          |     | 80-120               | Pass           |                    |
| Zinc                           |               |              | %     | 113      |          |     | 80-120               | Pass           |                    |
| Test                           | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Spike - % Recovery             |               |              |       |          |          |     |                      |                |                    |
| Heavy Metals                   |               |              |       | Result 1 |          |     |                      |                |                    |
| Boron                          | M21-Au25922   | NCP          | %     | 79       |          |     | 75-125               | Pass           |                    |
| Cadmium                        | M21-Au25922   | NCP          | %     | 101      |          |     | 75-125               | Pass           |                    |
| Copper                         | M21-Au25922   | NCP          | %     | 87       |          |     | 75-125               | Pass           |                    |
| Manganese                      | M21-Au25922   | NCP          | %     | 114      |          |     | 75-125               | Pass           |                    |
| Molybdenum                     | M21-Au25922   | NCP          | %     | 90       |          |     | 75-125               | Pass           |                    |
| Zinc                           | M21-Au25922   | NCP          | %     | 77       |          |     | 75-125               | Pass           |                    |
| Test                           | Lab Sample ID | QA<br>Source | Units | Result 1 |          |     | Acceptance<br>Limits | Pass<br>Limits | Qualifying<br>Code |
| Duplicate                      |               | <u>'</u>     |       | •        | ,        |     |                      |                |                    |
|                                |               |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Ammonia (as N)                 | M21-Au23129   | NCP          | mg/kg | 13       | 14       | 10  | 30%                  | Pass           |                    |
| Nitrate (as N)                 | M21-Au23129   | NCP          | mg/kg | 5.9      | 6.1      | 4.0 | 30%                  | Pass           |                    |
| Nitrite (as N)                 | M21-Au23129   | NCP          | mg/kg | < 5      | < 5      | <1  | 30%                  | Pass           |                    |
| Total Kjeldahl Nitrogen (as N) | M21-Au22583   | NCP          | mg/kg | 78       | 62       | 23  | 30%                  | Pass           |                    |
| % Moisture                     | M21-Au23710   | NCP          | %     | 15       | 17       | 15  | 30%                  | Pass           |                    |
| Duplicate                      |               |              |       | •        | ,        |     |                      |                |                    |
| Heavy Metals                   |               |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Boron                          | M21-Au25922   | NCP          | mg/kg | < 10     | < 10     | <1  | 30%                  | Pass           |                    |
| Cadmium                        | M21-Au25922   | NCP          | mg/kg | < 0.4    | < 0.4    | <1  | 30%                  | Pass           |                    |
| Copper                         | M21-Au25922   | NCP          | mg/kg | < 5      | < 5      | <1  | 30%                  | Pass           |                    |
| Manganese                      | M21-Au25922   | NCP          | mg/kg | 94       | 76       | 21  | 30%                  | Pass           |                    |
| Molybdenum                     | M21-Au25922   | NCP          | mg/kg | < 5      | < 5      | <1  | 30%                  | Pass           |                    |
| Zinc                           | M21-Au25922   | NCP          | mg/kg | 9.5      | 15       | 47  | 30%                  | Fail           | Q15                |
| Duplicate                      | ,             |              | J     |          |          |     |                      |                |                    |
|                                |               |              |       | Result 1 | Result 2 | RPD |                      |                |                    |
| Phosphorus                     | M21-Au22562   | NCP          | mg/kg | 78       | 71       | 8.0 | 30%                  | Pass           |                    |

Report Number: 816742-S



### Comments

### Sample Integrity

 Custody Seals Intact (if used)
 N/A

 Attempt to Chill was evident
 Yes

 Sample correctly preserved
 Yes

 Appropriate sample containers have been used
 Yes

 Sample containers for volatile analysis received with minimal headspace
 Yes

 Samples received within HoldingTime
 Yes

 Some samples have been subcontracted
 No

### **Qualifier Codes/Comments**

Code Description

Q15 The RPD reported passes Eurofins Environment Testing's QC - Acceptance Criteria as defined in the Internal Quality Control Review and Glossary page of this report.

### Authorised by:

Harry Bacalis Analytical Services Manager
Emily Rosenberg Senior Analyst-Metal (VIC)
Scott Beddoes Senior Analyst-Inorganic (VIC)

J. The

Glenn Jackson General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- \* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please  $\underline{\text{click here.}}$ 

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

# Senversa Pty Ltd

ABN 89 132 231 380

### www.senversa.com.au

enquiries@senversa.com.au

Linkedln: Senversa Facebook: Senversa





To the extent permissible by law, Senversa shall not be liable for any errors, omissions, defects or misrepresentations, or for any loss or damage suffered by any persons (including for reasons of negligence or otherwise).

©2021 Senversa Pty Ltd