

Site Locality Plan

PRELIMINARY SITE INVESTIGATION
BOX HILL INSTITUTE, SPRING STREET, BOX HILL, VICTORIA
FIGURE 1

Site Layout Plan

PRELIMINARY SITE INVESTIGATION
BOX HILL INSTITUTE, SPRING STREET, BOX HILL, VICTORIA
FIGURE 2

Map Produced by Cardno Geosciences and Environment Date: 2017-02-08 Coordinate System: GDA 1994 MGA Zone 55 Project: V161141G Map: V161141-GS-002-SiteLayoutPlan.mxd 01 Aerial Imagery Supplied by Nearmaps (December, 2016)

Environmental Assessment Areas

1:1,200 Scale at A3

Metres

0 25 50 75

PRELIMINARY SITE INVESTIGATION
BOX HILL INSTITUTE, SPRING STREET, BOX HILL, VICTORIA
FIGURE 3

Map Produced by Cardno Geosciences and Environment
Date: 2017-02-15
Coordinate System: GDA 1994 MGA Zone 55
Project: V161141G
Map: V161141-GS-004-EAA.mxd 01
Aerial Imagery Supplied by Nearmaps (December, 2016)

1:500 Scale at A3 Metres 0 10 20 30

Sample Location Plan

PRELIMINARY SITE INVESTIGATION
BOX HILL INSTITUTE, SPRING STREET, BOX HILL, VICTORIA
FIGURE 4

Map Produced by Cardno Geosciences and Environment Date: 2017-02-08 Coordinate System: GDA 1994 MGA Zone 55 Project: V161141G Map: V161141-GS-003-SampLocPlan 01.mxd 01 Aerial Imagery Supplied by Nearmaps (December, 2016)

V161141G Box Hill

									BTEX						TPH				С	RC Care TP	H Fractio	ons									PAH							
						Benzene	Toluene	Ethylbenzene	Xylene (m & p)	Xylene (o)	Xylene Total	Total BTEX	62 - 92	C10 - C14	C15 - C28	C29-C36	+C10 - C36 (Sum of total)		C10-C16	C16-C34 C34-C40	C10 - C40 (Sum of total)	F1: C6-C10 less BTEX	F2: >C10-C16 less	記さ				Fluorene										
LOR							mg/kg 0.1		_		mg/kg 0.3		20				50 50	20		100 100		20																
	IL Comm./In	nd., low pH, CE	EC, clay content -	aged		U. I	0.1	U. I	U.E	0.1	0.0	0.2		E					00	100 10			00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
0-2m		050																																				
0-2m	IL UR/POS,	low pH, CEC,	clay content - age	ea		-																																
	IL, Commerc	cial/Industrial [D																													40#3						
NEPM 2013 F																																3 ^{#3}						
NEPM 2013 F			trial D, for Vapour	r Intrusion Si	ilt																											4 ^{#3}						
0-1m						4	NL ^{#9}	NL ^{#9}			NL ^{#9}											250	NL ^{#9}															
NEPM 2013 S 0-1m	oil HSL Reci	reational C, for	r Vapour Intrusion	n, Silt		#9	#9	#9			#9											#0	#9	-														
	oil HSL Resi	idential A&B. fo	for Vapour Intrusio	on, Silt		NL**	NL**	NL ^{#9}			NL ^{#9}											NL"	NL ^{#9}															
0-1m						_	390	NL ^{#9}			95											40	230															
Location Code	Sample Depth	Sampled Date	Field ID	Sample	Lab Report																																	
Jour																																						
SB01			SB01/0 1	Normal	Number 532061	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	_	<20	<20	<50	<50	<50	<20	<50	<100 <10	0 -	<20	<50	< 0.5	<0.5	12	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.6	<0.5	<0.5	< 0.5	< 0.5	< 0.5	< 0.5
SB01	0.1	27/01/2017	+	Normal	532061	_	<0.1	<0.1	<0.2	<0.1	<0.3	-	<20 <20	<20	<50 <50	<50 <50	<50 <50	<20 <20	<50 <50	<100 <10	_	<20	+	<0.5	<0.5	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	<0.5		+	<0.5		<0.5
SB01		27/01/2017 27/01/2017	SB02/0.2	Normal Normal	532061 532061	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3	-	<20	<20	<50	<50	<50	<20	<50	<100 <10	0 -	<20	<50	<0.5 2.1	<0.5	2.6	<0.5 <0.5	<0.5 <0.5		<0.5	<0.5	0.6	<0.5	<0.5	<0.5	<0.5 <0.5		<0.5 <0.5
SB01 SB02	0.1	27/01/2017 27/01/2017 27/01/2017	SB02/0.2 SB02/0.5	Normal Normal	532061 532061 533268	<0.1	<0.1	<0.1	<0.2	<0.1	<0.3		<20 <20	<20 <20	<50 <50	<50 <50	<50 <50	<20 <20	<50 <50	<100 <10 <100 <10	0 -	<20 <20	<50 <50	-	1.6	+			<0.5	1.5			0.7	1	+	+	2.7	_
	0.1	27/01/2017 27/01/2017 27/01/2017 27/01/2017	SB02/0.2 SB02/0.5 QC01_270117	Normal Normal Normal Duplicate	532061 532061 533268 532061	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1	<0.2	<0.1	<0.3	<0.2	<20	<20	<50	<50	<50	<20	<50	<100 <10 <100 <10 <100 <10	0 - 0 - 0 -	<20 <20 <20	<50 <50 <50	-	1.6	2.6	<0.5	<0.5	<0.5	1.5	1.6	2.3	0.7	1 -	1.6	<0.5	2.7	<0.5 -
	0.1	27/01/2017 27/01/2017 27/01/2017 27/01/2017	SB02/0.2 SB02/0.5 QC01_270117 QC02_270117	Normal Normal Normal Duplicate	532061 532061 533268	<0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.5	<0.2 <0.2 <0.2	<0.1 <0.1 <0.1	<0.3 <0.3 <0.3	<0.2	<20 <20 <20	<20 <20 <20	<50 <50 <50	<50 <50 <50	<50 <50 <50	<20 <20 <20	<50 <50 <50	<100 <10 <100 <10 <100 <10	0 - 0 - 0 - 0 <50	<20 <20 <20	<50 <50 <50 <50	-	1.6	2.6	<0.5	<0.5	<0.5 - -	1.5 - -	1.6	2.3	0.7	1	1.6	<0.5	2.7	<0.5 -
SB02	0.1 0.2 0.5	27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017	SB02/0.2 SB02/0.5 QC01_270117 QC02_270117 SB03/0.1	Normal Normal Normal Duplicate Split	532061 532061 533268 532061 EM1700852	<0.1 <0.1 <0.1 <0.2	<0.1 <0.1 <0.1 <0.5 <0.1	<0.1 <0.1 <0.1 <0.5	<0.2 <0.2 <0.2 <0.5	<0.1 <0.1 <0.1 <0.5	<0.3 <0.3 <0.3 <0.5		<20 <20 <20 <10	<20 <20 <20 <50	<50 <50 <50 <100	<50 <50 <50 <100	<50 <50 <50 <50	<20 <20 <20 <10	<50 <50 <50 <50	<100 <10 <100 <10 <100 <10 <100 <10	0 - 0 - 0 - 0 <50	<20 <20 <20 <10	<50 <50 <50 <50	2.1	1.6	2.6 - - - 1.2	<0.5 - -	<0.5 - -	<0.5 - - - <0.5	1.5 - -	1.6	2.3 - - - - 0.6	0.7	1 < 0.5	1.6 - - - <0.5	<0.5	2.7	<0.5 - -
SB02 SB03	0.1 0.2 0.5	27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017	SB02/0.2 SB02/0.5 QC01_270117 QC02_270117 SB03/0.1 SB04/0.1	Normal Normal Normal Duplicate Split Normal	532061 532061 533268 532061 EM1700852 532061	<0.1 <0.1 <0.1 <0.2 <0.1	<0.1 <0.1 <0.1 <0.5 <0.1	<0.1 <0.1 <0.1 <0.5 <0.1	<0.2 <0.2 <0.2 <0.2 <0.5 <0.2	<0.1 <0.1 <0.1 <0.5 <0.1	<0.3 <0.3 <0.3 <0.5 <0.3		<20 <20 <20 <10 <20	<20 <20 <20 <50 <20	<50 <50 <50 <100 <50	<50 <50 <50 <100 <50	<50 <50 <50 <50 <50	<20 <20 <20 <10 <20	<50 <50 <50 <50 <50 <50	<100 <10 <100 <10 <100 <10 <100 <10 <100 <10	0 - 0 - 0 - 0 <50 0 -	<20 <20 <20 <10 <20	<50 <50 <50 <50 <50	2.1	1.6	2.6 - - - 1.2	<0.5 - - - <0.5	<0.5 - - - <0.5	<0.5 - - - <0.5	1.5 - - - <0.5	1.6 - - - <0.5	2.3 - - - - 0.6	0.7 - - - <0.5	1 < 0.5	1.6 - - - <0.5 <0.5	<0.5 - - - <0.5	2.7	<0.5 - - - <0.5
SB02 SB03 SB04 SB06	0.1 0.2 0.5 0.1 0.1	27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017	SB02/0.2 SB02/0.5 QC01_270117 QC02_270117 SB03/0.1 SB04/0.1 SB06/0.1	Normal Normal Normal Duplicate Split Normal	532061 532061 533268 532061 EM1700852 532061 532061	<0.1 <0.1 <0.1 <0.2 <0.1 -	<0.1 <0.1 <0.1 <0.5 <0.1	<0.1 <0.1 <0.1 <0.5 <0.1	<0.2 <0.2 <0.2 <0.5 <0.2	<0.1 <0.1 <0.1 <0.5 <0.1	<0.3 <0.3 <0.3 <0.5 <0.3		<20 <20 <20 <10 <20	<20 <20 <20 <50 <20	<50 <50 <50 <100 <50	<50 <50 <50 <100 <50	<50 <50 <50 <50 <50 <50	<20 <20 <20 <10 <20	<50 <50 <50 <50 <50 <50	<100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10	0 - 0 - 0 - 0 <50 -	<20 <20 <20 <10 <20	<50 <50 <50 <50 <50 <50 -	2.1 - - <0.5 <0.5	1.6 - - <0.5 <0.5	2.6 - - - 1.2 1.2	<0.5 - - <0.5 <0.5	<0.5 - - <0.5 <0.5	<0.5 - - <0.5 <0.5	1.5 - - - <0.5 <0.5	1.6 - - <0.5 <0.5	2.3 - - - 0.6 0.6	0.7 - - <0.5 <0.5	1 - - <0.5 <0.5	1.6 - - - <0.5 <0.5	<0.5 - - <0.5 <0.5	2.7 - - <0.5 <0.5	<0.5 - - <0.5 <0.5
SB02 SB03 SB04	0.1 0.2 0.5 0.1 0.1 0.1	27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017	SB02/0.2 SB02/0.5 QC01_270117 QC02_270117 SB03/0.1 SB04/0.1 SB06/0.1 SB07/0.1	Normal Normal Normal Duplicate Split Normal Normal Normal	532061 532061 533268 532061 EM1700852 532061 532061 532061	<0.1 <0.1 <0.1 <0.2 <0.1 -	<0.1 <0.1 <0.1 <0.5 <0.1 -	<0.1 <0.1 <0.1 <0.5 <0.1 -	<0.2 <0.2 <0.2 <0.5 <0.2 -	<0.1 <0.1 <0.1 <0.5 <0.1 -	<0.3 <0.3 <0.3 <0.5 <0.3 -		<20 <20 <20 <10 <20 <10 <20 <20 <20 <	<20 <20 <20 <50 <50 <20 <20 <20 <20 <	<50 <50 <50 <100 <50 -	<50 <50 <50 <100 <50 -	<50 <50 <50 <50 <50 -	<20 <20 <20 <10 <20 - <20	<50 <50 <50 <50 <50 -	<100 <100 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10	0 - 0 - 0 - 0 <50 -	<20 <20 <20 <10 <20 <20 <20 <20 <20 <20	<50 <50 <50 <50 <50 <50 -	2.1 - - <0.5 <0.5 <0.5	1.6 - - <0.5 <0.5	2.6 - - 1.2 1.2 1.2	<0.5 - - <0.5 <0.5 <0.5	<0.5 - - <0.5 <0.5 <0.5	<0.5 - - <0.5 <0.5 <0.5	1.5 - - <0.5 <0.5 <0.5	1.6 - - <0.5 <0.5 <0.5	2.3 - - 0.6 0.6 0.6	0.7 - - <0.5 <0.5 <0.5	1 < 0.5 < 0.5 < 0.5	1.6 - - <0.5 <0.5 <0.5 <2.2	<0.5 <0.5 <0.5 <0.5 <0.5	2.7 - - <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5
SB02 SB03 SB04 SB06	0.1 0.2 0.5 0.1 0.1 0.1 0.1	27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017	SB02/0.2 SB02/0.5 QC01_270117 QC02_270117 SB03/0.1 SB04/0.1 SB06/0.1 SB07/0.1	Normal Normal Normal Duplicate Split Normal Normal Normal	532061 532061 533268 532061 EM1700852 532061 532061 532061 532061	<0.1 <0.1 <0.1 <0.2 <0.1 - <0.1 <0.1	<0.1 <0.1 <0.1 <0.5 <0.1 - <0.1 <0.1	<0.1 <0.1 <0.1 <0.5 <0.1 -	<0.2 <0.2 <0.2 <0.5 <0.2 -	<0.1 <0.1 <0.1 <0.5 <0.1 -	<0.3 <0.3 <0.3 <0.5 <0.3 - <0.3 <0.3		<20 <20 <20 <10 <20 <10 <20 <20 <20 <	<20 <20 <20 <50 <50 <20 <20 <20 <20 <	<50 <50 <50 <100 <50 -	<50 <50 <50 <100 <50 -	<50 <50 <50 <50 <50 -	<20 <20 <20 <10 <20 - <20	<50 <50 <50 <50 <50 -	<100 <100 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10	0 - 0 - 0 - 0 <50 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	<20 <20 <20 <10 <20 <20 <20 <20 <20 <20	<50 <50 <50 <50 <50 <50 - <50 <50 <50	2.1 - - <0.5 <0.5 <0.5 4.6	1.6 - - <0.5 <0.5 <0.5	2.6 - - 1.2 1.2 1.2 4.6	<0.5	<0.5	<0.5	1.5 - - <0.5 <0.5 <0.5	1.6 - - <0.5 <0.5 <0.5 3.2	2.3 - - 0.6 0.6 0.6 4.6	0.7 - - <0.5 <0.5 <0.5 2.3	1 <0.5 <0.5 <0.5 <2	1.6 - - <0.5 <0.5 <0.5 <2.2	<0.5 <0.5 <0.5 <0.5 <0.5	2.7 - - <0.5 <0.5 <0.5 3.3	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5
SB02 SB03 SB04 SB06 SB07	0.1 0.2 0.5 0.1 0.1 0.1 0.1 0.5	27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017	SB02/0.2 SB02/0.5 QC01_270117 QC02_270117 SB03/0.1 SB04/0.1 SB06/0.1 SB07/0.1 SB07/0.5 SB08/0.1	Normal Normal Normal Duplicate Split Normal Normal Normal Normal	532061 532061 533268 532061 EM1700852 532061 532061 532061 532061 532061 533268	<0.1 <0.1 <0.1 <0.2 <0.1 - <0.1 <0.1	<0.1 <0.1 <0.5 <0.1 - - <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.5 <0.1 <0.1 <0.5 <0.1 - <0.1	<0.2 <0.2 <0.2 <0.5 <0.2 - <0.2 - <0.2	<0.1 <0.1 <0.5 <0.1 - <0.1 -	<0.3 <0.3 <0.3 <0.5 <0.3 - <0.3 <0.3		<20 <20 <20 <10 <20 <20 <10 <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <20 - <2	<20 <20 <20 <50 <20 <20 <20 <20 <20 -	<50 <50 <50 <100 <50 - <50 <50 <50	<50 <50 <50 <100 <50 <100 <50 - <50 <50 - <50 - <50 - <	<50 <50 <50 <50 <50 <50 <50 <50 <-50	<20 <20 <20 <10 <20 <20 <10 <20 - <20 - <20 < < <	<50 <50 <50 <50 <50 <50 - <50 - <50	<100 <100 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	<20 <20 <20 <10 <20 <20 <20 < < < < <	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50 <550 <5	2.1 - - <0.5 <0.5 <0.5 4.6 <0.5	1.6 - - - - - - - - - - - - -	2.6 - - 1.2 1.2 1.2 4.6 1.2	<0.5	<0.5	<0.5	1.5 - - <0.5 <0.5 <0.5 <0.5	1.6 - - <0.5 <0.5 <0.5 <0.5 <0.5	2.3 - - 0.6 0.6 0.6 4.6 0.6	0.7 - - <0.5 <0.5 <0.5 2.3	1 < 0.5 < 0.5 < 0.5 < 2 < 0.5	1.6 <0.5 <0.5 <0.5 <2.5 <0.5 <0.5 <0.5 <0.5	<0.5	2.7 - - <0.5 <0.5 <0.5 <0.5	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
SB02 SB03 SB04 SB06 SB07 SB08	0.1 0.2 0.5 0.1 0.1 0.1 0.1 0.5 0.1	27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017	SB02/0.2 SB02/0.5 QC01_270117 QC02_270117 SB03/0.1 SB04/0.1 SB06/0.1 SB07/0.1 SB07/0.5 SB08/0.1 SB09/0.1	Normal Normal Normal Duplicate Split Normal Normal Normal Normal Normal	532061 532061 533268 532061 EM1700852 532061 532061 532061 532061 533268 532061	<0.1 <0.1 <0.2 <0.1 - <0.1 - <0.1 <0.1	<0.1 <0.1 <0.5 <0.1 <0.1 - <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.1 <0.5 <0.1 - <0.1 <0.1 <0.1	<0.2 <0.2 <0.2 <0.5 <0.2 - <0.2 <0.2 <0.2	<0.1 <0.1 <0.1 <0.5 <0.1 - <0.1 - <0.1 <0.1 - <0.1 <0.1	<0.3 <0.3 <0.3 <0.5 <0.3 <0.3 <0.5 <0.3 - <0.3 <0.3 <0.3		<20 <20 <20 <10 <20 <20 <10 <20 - <20 - <20 <20 <20 <20 <20 -	<20 <20 <20 <50 <20 <20 <20 <20 <20 <20 <20 <20 <20 <2	<50 <50 <50 <100 <50 - <50 <50 - <50	<50 <50 <100 <50 <100 <50 - <50 <50 - <50 <50 <50 <50 - <50 - <50	<50 <50 <50 <50 <50 <50 <50 - <50 <50 <50 <50 <50 <50 <50 <50	<20 <20 <20 <10 <20 <20 <20 < <20 < <20 < <20 < <20 - <20 - <20 -	<50 <50 <50 <50 <50 - <50 - <50 <50 <50	<100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <<100 <10 <<100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	<200 <200 <200 <100 <200 <100 <200 <200	<50 <50 <50 <50 <50 <50 <50 <50 <-50 <-5	2.1 - - - - - - - - - - - - -	1.6	2.6 - - 1.2 1.2 1.2 4.6 1.2 2.6 1.8	<0.5	<0.5	<0.5	1.5 - - - - - - - - - - - - -	1.6 - - <0.5 <0.5 <0.5 <0.5 <0.5	2.3 - - 0.6 0.6 0.6 4.6 0.6 2.3	0.7 - - - <0.5 <0.5 <0.5 2.3 <0.5	1	1.6 - - -0.5 <0.5 <0.5 2.2 <0.5 1.3	<0.5	2.7 - - - - - - - - - - - - -	<0.5
SB02 SB03 SB04 SB06 SB07 SB08 SB09	0.1 0.2 0.5 0.1 0.1 0.1 0.1 0.5 0.1	27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017	SB02/0.2 SB02/0.5 QC01_270117 QC02_270117 SB03/0.1 SB04/0.1 SB06/0.1 SB07/0.1 SB07/0.5 SB08/0.1 SB09/0.1	Normal Normal Normal Duplicate Split Normal Normal Normal Normal Normal Normal Normal	532061 532061 533268 532061 EM1700852 532061 532061 532061 532061 532061 532061 532061	<0.1 <0.1 <0.2 <0.1 <0.1 - <0.1 <0.1 - <0.1 <0.1	<0.1 <0.1 <0.5 <0.1 <0.1 - <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.5 <0.1 - <0.1 - <0.1 <0.1 - <0.1 - <0.1	<0.2 <0.2 <0.2 <0.5 <0.2 - <0.2 <0.2 <0.2 <0.2 <0.2	<0.1 <0.1 <0.1 <0.5 <0.1 - <0.1 <0.1 - <0.1 <0.1 - <0.1 - <0.1	<0.3 <0.3 <0.3 <0.5 <0.3 <0.3 - <0.3 - <0.3 <0.3 <0.3 - <0.3 - <0.3		<20 <20 <20 <10 <20 <20 <10 <20 < < < < < < <	<20 <20 <20 <50 <20 <20 <20 <20 <	<50 <50 <50 <100 <50 - <50 <50 - <50 <50	<50 <50 <50 <100 <50 <50 <50 <-50 <-50 <-50 <-50 <-50	<50 <50 <50 <50 <50 <50 <50 - <50 <50 <50 <50 <50 <50 - <50 - <50 - <50 - <50	<20 <20 <20 <10 <20 <20 <10 <20 - <20 <20 <20 <20 - <20 - <20 <20	<50 <50 <50 <50 <50 <50 <50 - <50 <50 <50 <50 <50 <50 <50 - <50 <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <50 - <5	<100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <100	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	<200 <200 <200 <100 <200 <200 <200 <200	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	2.1 - - - - - - - - - - - - -	1.6	2.6 - - 1.2 1.2 1.2 4.6 1.2 2.6 1.8 1.2	<0.5	<0.5	<0.5	1.5 - - - - - - - - - - - - -	1.6 - - - - - - - - - - - - -	2.3 - - 0.6 0.6 0.6 4.6 0.6 2.3 1.5	0.7 - - - - - - - - - - - - -	1	1.6 - - -0.5 -	<0.5	2.7 - -0.5 <0.5 <0.5 3.3 <0.5 1.9 1.1 <0.5	<0.5
\$B02 \$B03 \$B04 \$B06 \$B07 \$B08 \$B09 \$B10	0.1 0.2 0.5 0.1 0.1 0.1 0.5 0.1 0.1 0.1	27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017	SB02/0.2 SB02/0.5 QC01_270117 QC02_270117 SB03/0.1 SB04/0.1 SB07/0.1 SB07/0.5 SB08/0.1 SB09/0.1 SB010/0.1	Normal Normal Normal Duplicate Split Normal Normal Normal Normal Normal Normal Normal Normal	532061 532061 533268 532061 EM1700852 532061 532061 532061 532061 532061 532061 532061 532061	<0.1 <0.1 <0.2 <0.1 <0.1 - <0.1 <0.1 - <0.1 <0.1	<0.1 <0.1 <0.5 <0.1 - <0.1 - <0.1 <0.1 - <0.1 <0.1 <0.1	<0.1 <0.1 <0.5 <0.1 - <0.1 - <0.1 <0.1 - <0.1 - <0.1	<0.2 <0.2 <0.2 <0.5 <0.2 - <0.2 <0.2 <0.2 <0.2 <0.2	<0.1 <0.1 <0.1 <0.5 <0.1 - <0.1 <0.1 - <0.1 <0.1 - <0.1 - <0.1 - <0.1	<0.3 <0.3 <0.3 <0.5 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3		<20 <20 <20 <10 <20 <20 <10 <20 < < < < < < < < < <	<20 <20 <20 <20 <50 <20 <20 <20 <20 <20 <20 <20 <20 <20 <2	<50 <50 <50 <100 <50 - <50 <50 - <50 <50 <50 <50 <50	<50 <50 <50 <100 <50 <50 <50 <-50 <-50 <-50 <-50 <-50	<50 <50 <50 <50 <50 <50 - <50 - <50 <50 <50 - <50 - <50 - <50 <50 <550 <5	<20 <20 <20 <10 <20 <20 <10 <20 - <20 <20 <20 - <20 - <20 <20 <20 <20	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	<20 <20 <20 <10 <20 <20 <10 <20 <20 <20 <20 <20 <20 <20 <20 <20 <2	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	2.1 - - - - - - - - - - - - -	1.6	2.6 - - 1.2 1.2 1.2 4.6 1.2 2.6 1.8 1.2	<0.5	<0.5	<0.5	1.5 - - - - - - - - - - - - -	1.6 - -0.5 <0.5 <0.5 3.2 <0.5 1.6 1	2.3 - - 0.6 0.6 0.6 4.6 0.6 2.3 1.5 0.6	0.7	1	1.6	<0.5	2.7 - -0.5 -0.5 -0.5 3.3 -0.5 1.9 1.1 -0.5 -0.5	<0.5
SB02 SB03 SB04 SB06 SB07 SB08 SB09 SB10 SB11	0.1 0.2 0.5 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.3	27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017	SB02/0.2 SB02/0.5 QC01_270117 QC02_270117 SB03/0.1 SB04/0.1 SB07/0.1 SB07/0.5 SB08/0.1 SB09/0.1 SB010/0.1 SB011/0.3 SB011/0.3	Normal Normal Normal Duplicate Split Normal	532061 532061 532061 533268 532061 EM1700852 532061 532061 532061 532061 532061 532061 532061 532061	<0.1 <0.1 <0.2 <0.1 - <0.1 - <0.1 - <0.1 <0.1 - <0.1 -	<0.1 <0.1 <0.5 <0.1 - <0.1 <0.1 - <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.5 <0.1 - <0.1 <0.1 - <0.1 <0.1 <0.1 <0.1	<0.2 <0.2 <0.2 <0.5 <0.2 - <0.2 <0.2 - <0.2 <0.2 <0.2 <0.2 <0.2	<0.1 <0.1 <0.1 <0.5 <0.1 - <0.1 <0.1 <0.1 <0.1 <0.1 - <0.1 <0.1 <0.1 <0.1	<0.3 <0.3 <0.3 <0.5 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	- - - - -	<20 <20 <20 <10 <20 <10 <20 < <20 <20 < <20 < <20 <20 <20 <20 <20	<20 <20 <20 <50 <20 <20 <20 <20 <20 <20 <20 <20 <20 <2	<50 <50 <50 <100 <50 - <50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<50 <50 <100 <50 <100 <50 - <50 <50 <50 <50 <50 <50 <50 <50	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<20 <20 <20 <10 <20 - <20 - <20 <20 <20 - <20 - <20 - <20 <20 <20 <20 <20 <20	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <100	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	<20 <20 <20 <10 <20 <10 <20 <20 <20 <20 <20 <20 <20 <20 <20 <2	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	2.1 - -0.5 -0.5 -0.5 4.6 -0.5 2.1 1.3 -0.5 -0.5	1.6	2.6 - - 1.2 1.2 1.2 4.6 1.2 2.6 1.8 1.2	<0.5	<0.5	<0.5	1.5	1.6	2.3 - - 0.6 0.6 0.6 4.6 0.6 2.3 1.5 0.6 0.6	0.7	1	1.6	<0.5	2.7	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5
SB02 SB03 SB04 SB06 SB07 SB08 SB09 SB10 SB11 SB12	0.1 0.2 0.5 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.1 0.1	27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017 27/01/2017	SB02/0.2 SB02/0.5 QC01_270117 QC02_270117 SB03/0.1 SB04/0.1 SB06/0.1 SB07/0.5 SB08/0.1 SB09/0.1 SB010/0.1 SB011/0.3 SB012/0.1	Normal Normal Normal Duplicate Split Normal	532061 532061 533268 532061 EM1700852 532061 532061 532061 532061 532061 532061 532061 532061 532061 532061	<0.1 <0.1 <0.2 <0.1 - <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1 <0.1 <0.5 <0.1 - <0.1 <0.1 - <0.1 <0.1 - <0.1 <0.1	<0.1 <0.1 <0.5 <0.1 - <0.1 <0.1 - <0.1 <0.1 <0.1 <0.1	<0.2 <0.2 <0.2 <0.5 <0.2 - <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.1 <0.1 <0.1 <0.5 <0.1 - <0.1 <0.1 - <0.1 <0.1 - <0.1 - <0.1 - <0.1 - <0.1 - <0.1	<0.3 <0.3 <0.3 <0.5 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3 <0.3	- - - - - - - -	<20 <20 <20 <10 <20 <20 <10 <20 <20 <20 <20 <20 <20 <20 <20 <20 <2	<20 <20 <20 <50 <20 <20 <20 <20 <20 <20 <20 <20 <20 <2	<50 <50 <50 <100 <50 <50 <50 <50 <50 <50 <50 <50 <50 <	<50 <50 <100 <50 <100 <50 - <50 <50 - <50 <50 <50 <50 <50 <50 <50 < < < < < < < < < <-	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<20 <20 <10 <20 <10 <20 <20 <20 <20 <20 <20 <20 <20 <20 <2	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	<100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <10 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <1	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	<20 <20 <20 <10 <20 <20 <20 <20 <20 <20 <20 <20 <20 <2	<50 <50 <50 <50 <50 <50 <50 <50 <50 <50	2.1 - -0.5 <0.5 <0.5 4.6 <0.5 2.1 1.3 <0.5 <0.5	1.6	2.6 - - 1.2 1.2 1.2 4.6 1.2 2.6 1.8 1.2 1.2 1.2	<0.5	<0.5	<0.5	1.5	1.6	2.3 - - 0.6 0.6 0.6 4.6 0.6 2.3 1.5 0.6 0.6	0.7	1	1.6	<0.5	2.7 - -0.5 <0.5 <0.5 3.3 <0.5 1.9 1.1 <0.5 <0.5 <3.3	<0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5

Env Stds Comments

#1:Fresh contamination, generic guideline value, independent of soil pH, CEC, clay content

#2:In soil for at least 2 years

#3:B(a)P TEQ calculated from 8 carcinogenic PAHs, refer to notes for Table 1A(1) in NEPM 2013 #4:Sum of 16 most commonly reported PAHs, refer to notes for Table 1A(1) in NEPM 2013

#5:HIL assumes 70% oral bioavailability

(Cardno

#6:HIL based on model with 50% oral bioavailability

#7:HIL does not address elemental mercury

#8:HIL relates to non-dioxin-like PCBs only, refer to notes for Table 1A(1) in NEPM 2013

#9:NL The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level result in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'.

#10: Value calculated using CEC average value of 24meg/100g and pH average value of 9.1 from Table 1B(1)

from Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Appendix B Page 1 of 3

								PAH										Metals									Inorgani	ics			Pheno	ıs	Halogenated Phenols
						Indeno(1,2,3-c,d)pyrene	Naphthalene	PAHs (Sum of total)	Phenanthrene	Pyrene	Arsenic	Beryllium	Boron	Cadmium	Chromium (hexavalent)	Chromium (III+VI)	Cobalt	Copper	Lead	Manganese	Mercury	Nickel	Selenium	Zinc	Conductivity (1:5 aqueous extract)	CEC	Cyanide (Free)	Moisture Moisture Content (dried @	pH (aqueous extract)	2-methylphenol	3-&4-methylphenol	Phenol	Pentachlorophenol
LOR							mg/kg 0.5			mg/kg 0.5		mg/kg 2		mg/kg 0.4		mg/kg 5	mg/kg 5	mg/kg 5	mg/kg 5	mg/kg 5	mg/kg 0.1	mg/kg 5	mg/kg 2	mg/kg 5	US/CM 10	meq/100g 0.05		% % 1 1			mg/kg 0.4		mg/kg 1
	IL Comm./Ir	d., low pH, CE	C, clay content - a	aged		0.5	0.5	0.5	0.5	0.5			10	0.4	1	3	3		3	3	0.1	<u> </u>	2	<u> </u>	10	0.03	3	1 1	0.1	0.2	0.4	0.5	
0-2m	W 115/500	I		1			370 ^{#1}				160#2							320#2#10	1800#2			520 ^{#2#10}		1300#2#10									
0-2m	IL UR/PUS,	IOW PH, CEC, C	clay content - age	?a			170 #1				100 ^{#2}							220 #2#10	1100#2			310 ^{#2#10}		840 ^{#2#10}									
		cial/Industrial D	1					4000#4			3000#5		300000	900			4000	240000	1500#6	60000		6000	10000	400000			1500					240000	660
NEPM 2013 H								300 ^{#4} 400 ^{#4}			300 ^{#5}	90	20000 40000	90	300 500		300 600	17000 30000		19000 14000	80 ^{#7}	1200 1200	700	30000 60000			240 300					40000 45000	120 130
NEPM 2013 S			rial D, for Vapour	Intrusion, Si	ilt			400			300								1200		120												
0-1m NEPM 2013 S	oil HSL Rec	reational C. for	Vapour Intrusion.	Silt			NL ^{#9}																										
0-1m	OII FIOL IXEC	reational C, loi	vapour intrusion,	, Oilt			NL ^{#9}																										
NEPM 2013 S 0-1m	oil HSL Res	idential A&B, fo	r Vapour Intrusio	n, Silt			4																										
Location	Sample	Sampled	Field ID	Sample	Lab Report		4																										
Code	Depth	Date		Туре	Number																												
SB01	0.1	27/01/2017	SB01/0.1	Normal	532061	<0.5	<0.5	<0.5	<0.5	<0.5	3.9	-	-	<0.4	-	24	-	65	160	-	<0.1	13	-	270	-	-	-	- 10	-	ļ -	-	-	-
	0.2	27/01/2017	SB02/0.2	Normal	532061	0.6	<0.5	16	1.8	2.9	3.2	-	-	8.0	-	18	-	60	150	-	<0.1	9.4	-	370	-	-	-	- 7.9	-	ļ -	-	-	-
SB02		27/01/2017	SB02/0.5	Normal	533268	-	<0.5	-	-	-	4.7	-	-	<0.4	-	47	-	35	30	-	-	44	-	82	-	-	-	- 16	-	ļ -	-	-	-
	0.5	27/01/2017	QC01_270117	Duplicate	532061	-	<0.5	-	-	-	5.7	-	-	<0.4	-	45	-	28	26	-	-	40	-	69	-	-	-	- 15	-	ļ -	-	-	-
		27/01/2017	QC02_270117	Split	EM1700852	-	<1	-	-	-	<5	-	-	<1	-	38	-	19	19	-	<0.1	21	-	42	-	-	-	14.5 -	-	-	-	-	-
SB03	0.1	27/01/2017	SB03/0.1	Normal	532061	<0.5	<0.5	<0.5	<0.5	<0.5	3	-	-	<0.4	-	22	-	9.3	7.5	-	<0.1	12	-	43	-	-	-	- 12	-	-	-	-	-
SB04	0.1	27/01/2017	SB04/0.1	Normal	532061	<0.5	<0.5	<0.5	<0.5	<0.5	<2	<2	<10	<0.4	<1	35	43	51	<5	940	<0.1	150	<2	75	200	23	<5	- 5.1	9.9	<0.2	<0.4	<0.5	<1
SB06	0.1	27/01/2017	SB06/0.1	Normal	532061	<0.5	<0.5	<0.5	<0.5	<0.5	3.7	-	-	<0.4	-	22	-	30	34	-	<0.1	84	-	79	-	-	-	- 3.5	-	-	-	-	-
SB07	0.1	27/01/2017	SB07/0.1	Normal	532061	1.7	<0.5	25.3	1.6	3.7	4.8	-	-	0.6	-	20	-	34	41	-	<0.1	78	-	88	-	-	-	- 4.6	-	ļ -	-	-	-
	0.5	27/01/2017	SB07/0.5	Normal	533268	<0.5	<0.5	<0.5	<0.5	<0.5	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	- 16	-	<u> </u>	-	-	-
SB08	0.1	27/01/2017	SB08/0.1	Normal	532061	0.7	<0.5	13.2	0.9	2.2	12	-	-	<0.4	-	21	-	28	110	-	<0.1	23	-	120	-	-	-	- 5.6	-	-	-	-	-
SB09	0.1	27/01/2017	SB09/0.1	Normal	532061	0.5	<0.5	8	0.6	1.1	8.3	-	-	<0.4	-	20	-	17	87	-	0.1	14	-	91	-	-	-	- 5	-	-	-	-	-
SB10	0.1	27/01/2017	SB010/0.1	Normal	532061	<0.5	<0.5	<0.5	<0.5	<0.5	5	-	-	0.6	-	17	-	18	21	-	<0.1	14	-	66	-	-	-	- 2.9	-	-	-	-	-
SB11	0.3	27/01/2017	SB011/0.3	Normal	532061	<0.5	<0.5	<0.5	<0.5	<0.5	2.1	-	-	<0.4	-	18	-	35	9	-	<0.1	65	-	28	-	-	-	- 24	-	-	-	-	-
SB12	0.1	27/01/2017	SB012/0.1	Normal	532061	<0.5	<0.5	<0.5	<0.5	<0.5	11	<2	18	<0.4	<1	34	11	26	16	200	<0.1	41	<2	52	120	25	<5	- 8.8	8.3	<0.2	<0.4	<0.5	<1
SB13	0.1	27/01/2017	SB013/0.1	Normal	532061	1	<0.5	18.8	1.1	3.2	3.8		-	< 0.4	-	17	-	24	110	-	<0.1	20	-	80	-	-	-	- 10	-	-	-	-	-
SB14	0.1	27/01/2017	SB014/0.1	Normal	532061	<0.5	<0.5	<0.5	<0.5	<0.5	<2		-	< 0.4	-	5.9	-	8.9	9.2	-	<0.1	<5	-	29	-	-	-	- 3.9	-	-	-	-	-
SB15	0.3	27/01/2017	SB15/0.3	Normal	532061	<0.5	<0.5	0.7	<0.5	<0.5	3.6	-	-	<0.4	-	26	-	20	16	-	<0.1	37	-	55	-	-	-	- 19	-	-	-	-	-
Env Stds Cor																																	

Table B-1: Soil Analytical Results

Env Stds Comments

#1:Fresh contamination, generic guideline value, independent of soil pH, CEC, clay con

#2:In soil for at least 2 years

#3:B(a)P TEQ calculated from 8 carcinogenic PAHs, refer to notes for Table 1A(1) in NE #4:Sum of 16 most commonly reported PAHs, refer to notes for Table 1A(1) in NEPM 2C #5:HIL assumes 70% oral bioavailability

#6:HIL based on model with 50% oral bioavailability

#7:HIL does not address elemental mercury

#8:HIL relates to non-dioxin-like PCBs only, refer to notes for Table 1A(1) in NEPM 2013 #9:NL The soil saturation concentration (Csat) is defined as the soil concentration at wh cannot dissolve any more of an individual chemical. The soil vapour equilibrium with the maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a could not exceed a level result in the maximum allowable vapour risk for the given scen scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limitir #10: Value calculated using CEC average value of 24meg/100g and pH average value of from Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Appendix B Page 2 of 3

V161141G Box Hill

											Orga	nochlori	ne Pesti	cides						Organophosphorous Pesticides	rous Herbicides					Pesticides			Polyc	hlorina	ted Biph	nenyls				
						4,4-DDE	Aldrin	chlordane	aga	ТОО	Dieldrin	Endosulfan I	Endosulfan II	Endosulfan sulphate	Endrin	Heptachlor	Hexachlorobenzene	Methoxychlor	Toxaphene	Chlorpyrifos	2,4,5-Trichlorophenoxy Acetic Acid	Hedonal	Atrazine	2-Methyl-4- chlorophenoxyacetic acid	2-Methyl-4-Chlorophenoxy Butanoic Acid	Месоргор	Picloram	Mirex	Arochlor 1016	Arochlor 1221	Arochlor 1232	Arochlor 1242	Arochlor 1248	Arochlor 1254	Arochlor 1260	PCBs (Sum of total)
						mg/kg			mg/kg			mg/kg	mg/kg			mg/kg		mg/kg		mg/kg				mg/kg			mg/kg	mg/kg		mg/kg						
NEPM 2013 F	II Comm /Ir	nd low nH CF	C, clay content - a	aned		0.05	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	1	0.2	0.5	0.5	0.2	0.5	0.5	0.5	0.5	0.01	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
0-2m	IL COMMITIZATI	id., iow pri, oz.	o, oldy contone	ugou						640#1																										
	IL UR/POS,	low pH, CEC, o	clay content - age	ed						400#1																										
0-2m NEPM 2013 H	IIL. Commer	cial/Industrial D	1					530		180#1					100	50	80	2500	160	2000	5000	9000	2500	5000	5000	5000	35000	100								7#8
NEPM 2013 H								70							20	10	10	400	30	250	800	1300		800	800	800	5700	20								1 ^{#8}
NEPM 2013 F			sial D. far Var	Intrusian C	:14			90							20	10	15	500	30	340	900	1600	470	900	900	900	6600	20								1#8
0-1m	OII HSL CON	nmerciai/industi	rial D, for Vapour	intrusion, S	IIT	-															-												H			
NEPM 2013 S	oil HSL Rec	reational C, for	Vapour Intrusion	, Silt																																
0-1m	oil USI Dos	idential ASP fo	r Vapour Intrusio	n Silt																																
0-1m	IOII FIOL INES	idential Adb, id	vapour initiusio	iii, Oiit																																
Location	Sample	Sampled	Field ID	Sample	Lab Report																												•			
Code	Depth	Date	0004/04	Type	Number			Т	T	1					I						Т			T									$\overline{}$		$\overline{}$	$\overline{}$
SB01	0.1	27/01/2017	SB01/0.1	Normal	532061	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+-	-	-	-	-	-	-	-	<u> </u>	-	-	-	-		-	-
	0.2	27/01/2017	SB02/0.2	Normal	532061	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	
SB02		27/01/2017	SB02/0.5	Normal	533268	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ļ -	-	-	-	-	-	-	-	<u> </u>	-	-	-	-		-	-
	0.5		QC01_270117	Duplicate	532061	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ļ -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		+	QC02_270117	Split	EM1700852	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ļ -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB03	0.1	27/01/2017	SB03/0.1	Normal	532061	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	ļ -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB04	0.1	27/01/2017	SB04/0.1	Normal	532061	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1	<0.2	<0.5	<0.5	<0.2	<0.5	<0.5	<0.5	<0.5	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	<0.1	<0.1
SB06	0.1	27/01/2017	SB06/0.1	Normal	532061	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB07	0.1	27/01/2017	SB07/0.1	Normal	532061	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0507	0.5	27/01/2017	SB07/0.5	Normal	533268	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-
SB08	0.1	27/01/2017	SB08/0.1	Normal	532061	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
SB09	0.1	27/01/2017	SB09/0.1	Normal	532061	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
SB10	0.1	27/01/2017	SB010/0.1	Normal	532061	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB11	0.3	27/01/2017	SB011/0.3	Normal	532061	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
SB12	0.1	27/01/2017	SB012/0.1	Normal	532061	<0.05	<0.05	<0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<1	<0.2	<0.5	<0.5	<0.2	<0.5	<0.5	<0.5	<0.5	<0.01	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 <	<0.1	<0.1
SB13	0.1	27/01/2017	SB013/0.1	Normal	532061	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
SB14	0.1	27/01/2017		Normal	532061	-	-	-	-	-	-	-		_	-		-	_	-	-	† <u>-</u>	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
SB15	0.3	27/01/2017	SB15/0.3	Normal	532061	-	_	 -	-	-	-	-	_	_	_	_	_	_	-	-	+-	-	-	 -	-	_	_	-	-	-	-	_	-		-	一
Env Stds Co		1 2 0 2011	52.0.0.0	1.10	1 002007																				<u> </u>					$\overline{}$				$\overline{}$	-	

Env Stds Comments

#1:Fresh contamination, generic guideline value, independent of soil pH, CEC, clay con

#2:In soil for at least 2 years

#3:B(a)P TEQ calculated from 8 carcinogenic PAHs, refer to notes for Table 1A(1) in NE #4:Sum of 16 most commonly reported PAHs, refer to notes for Table 1A(1) in NEPM 2C

#5:HIL assumes 70% oral bioavailability

#6:HIL based on model with 50% oral bioavailability

#7:HIL does not address elemental mercury

#8:HIL relates to non-dioxin-like PCBs only, refer to notes for Table 1A(1) in NEPM 2013 #9:NL The soil saturation concentration (Csat) is defined as the soil concentration at wh cannot dissolve any more of an individual chemical. The soil vapour equilibrium with the maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for could not exceed a level result in the maximum allowable vapour risk for the given scen scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limitir #10: Value calculated using CEC average value of 24meg/100g and pH average value of from Schedule B1 - Guideline on Investigation Levels for Soil and Groundwater.

Appendix B Page 3 of 3

	Cardno Shaping the Future	Borehole l	Rec	oro	l: SI	301		PAGE 1 OF 1
Projec		Position: H	:			Date Drille	ed: 27/01/201	7
Locat	ion: Spring Street, Box Hill	N				Drill Rig:	Cardno 6WI) Landcruiser
		Surface Level:		nd Lev	⁄el	Drilling M	ethod: Dire	ct Push
loh N	o.: V161141G	Stickup:	N/A	_1		Loggod/C	bockod: DN	1LI / D. II
JOD IN	0 V101141G	Inclination:	Vertic	aı		Logged/C	hecked: RM	IH / DJL
Depth (m)	Description of Stra	ata		Graphic Log	Depth (m)	Sample	PID (ppm)/ Contam Ranking	Remarks
0.0	FILL, Silty GRAVEL (GP) coarse graine plasticity, pale grey, dense to very dense dour, no staining	ed, poorly graded, se, slightly moist, i	low no		0.0	SB01/0.1	PID = 0 V=0/O=0	
0.2	Silty CLAY (CI) moderate plasticity, ora slightly moist, no odour, no staining	nge brown, hard,			0.2 — —			
_					_			
0.4					0.4			
						SB01/0.5	PID = 0.1	
							V=0/O=0	
_								
0.6					0.6			
_								
_					_			
_					_			
0.8					0.8			
_					_			
_					_	SB01/0.9	PID = 0	
_	SILTSTONE (CW), completely weather mottled with white, slightly moist, no sta	ed, pale orange b aining	rown		_	020110.0	V=0/O=0	
1.0	End of SB01 at 1.0 m				1.0			
Key:	Notes See Bore	Location Plan in Asses	div ^					r Observations:
and s	kplanation of abbreviations ymbols, refer to Cardno or Rock Notes	e Location Plan in Appen e terminated due to refus	idix A al on silts	stone			lo groundwater ob	oserved

	Cardno Shaping the Future	Borehole	Rec	ord	l: SI	B02		PAGE 1 OF 1
			E: N: Groui N/A Vertic		/el	Drill Rig: Drilling Mo	Cardno 6Wlethod: Dire	D Landcruiser ct Push
Depth (m)	Description of Stra	l	7 51 110	Graphic Log	Depth (m)		PID (ppm)/ Contam Ranking	Remarks
0.0 - - - - - 0.2	FILL, Silty GRAVEL (GP) coarse graine plasticity, pale grey, dense to very dense odour, no staining Clayey SILT (CL) low plasticity, dark br moist, no odour, no staining	se, slightly moist,	no		0.0	SB02/0.1	PID = 0.2 V=0/O=0	QC01_270117 and QC02_270117 collected here
0.4	Silty CLAY (CI) moderate plasticity, ora slightly moist, no odour, no staining	ange brown, hard,			0.4	SB02/0.5	PID = 0.1 V=0/O=0	
0.8	SILTSTONE (CW), completely weather mottled with white, slightly moist, no state and of SB02 at 1.0 m	red, pale orange baining	brown		0.8	SB02/0.9	PID = 0 V=0/O=0	
and s	QC01_2	ELocation Plan in Appe 70117 and QC02_2701 e terminated due to refu	17 are du		of SB02	10 4	Froundwate ogroundwater of	er Observations:

	Cardno Shaping the Future	Borehole	Rec	orc	l: SI	B03		PAGE 1 OF 1
Project Locat		Position: H E Surface Level: Stickup:	l:	d Lev	/el	Drill Rig:	ed: 27/01/201 Cardno 6WI ethod: Direct) Landcruiser
Job N	o.: V161141G	Inclination:	Vertica	al		Logged/C	hecked: RM	IH / DJL
Depth (m)	Description of Str	ata		Graphic Log	Depth (m)	Sample	PID (ppm)/ Contam Ranking	Remarks
0.0	CRUSHED STONE compacted crushe FILL, Gravelly SILT (ML) low plasticity, moist, no odour, no staining		ghtly		0.0	SB03/0.1	PID = 0.2 V=0/O=0	
0.4	Clayey SILT (CL) low plasticity, dark br moist, no odour, no staining	own, very stiff, slig	ghtly		0.4	SB03/0.35	PID = 0.5 V=0/O=0	
	Silty CLAY (CI) moderate plasticity, ora slightly moist, no odour, no staining	ange brown, hard,				SB03/0.5	PID = 0.4 V=0/O=0	
					0.8			
_	SILTSTONE (CW), completely weather mottled with white, slightly moist, no sta	red, orange brown aining	2 2 2 2 2		_	SB03/0.9	PID = 0.1 V=0/O=0	
1.0	End of SB03 at 1.0 m				1.0			
and s	xplanation of abbreviations ymbols, refer to Cardno or Rock Notes	E Location Plan in Appen e terminated due to refus	idix A al on siltsi	tone			Froundwate o groundwater ob	r Observations: served

	Cardno Shaping the Future	Borehole	Rec	ord	: SE	304		PAGE 1 OF 1
	ct: PSI Box Hill ion: Spring Street, Box Hill	Surface Level: Stickup:	N/A			Drill Rig: Drilling Me	thod: Dire	O Landcruiser ct Push
Job N	o.: V161141G	Inclination:	Vertic	al		Logged/Ch	ecked: RM	1H / DJL
Depth (m)	Description of Stra	ata		Graphic Log	Depth (m)	Sample	PID (ppm)/ Contam Ranking	Remarks
0.2	ASPHALT FILL, Sandy SILT (ML) low plasticity, passightly moist, no odour, no staining, missightly moist, no odour, no staining Silty CLAY (CI) moderate plasticity, ora slightly moist, no odour, no staining	nor gravel	m,		0.0	SB04/0.5	PID = 0.2 V=0/O=0 PID = 0.1 V=0/O=0	
_	End of SB04 at 0.9 m				_		V=0/O=0	
and sv	xplanation of abbreviations ymbols, refer to Cardno or Rock Notes	: e Location Plan in Apper e terminated due to refus	ndix A al on sus	spected :	siltstone		roundwater groundwater obs	r Observations: served

	Cardno Shaping the Future	Borehole Red	ord: S	B05		PAGE 1 OF 1		
	ct: PSI Box Hill ion: Spring Street, Box Hill lo.: V161141G	Position: H E: N: Surface Level: Grou Stickup: N/A Inclination: Vertice		Drill Rig: Drilling M	ed: 27/01/20° Cardno 6WI lethod: Dire	D Landcruiser ct Push		
Depth (m)	Description	of Strata	Graphic Log Depth (m)	Sample	PID (ppm)/ Contam Ranking	Remarks		
0.0	ASPHALT FILL, Silty GRAVEL (GP) coarse plasticity, brown grey, slightly mo refusal End of SB05 at 0.1 m	grained, poorly graded, low pist, no odour, no staining,				Not enough soil to form a sample		
and s		Notes: See Bore Location Plan in Appendix A Attempted two bores at this location but t	Appendix A s location but both met with refusal at 0.1 m Groundwater Observations: No groundwater observed					

U	Cardno Shaping the Future	Borehole F	Rec	ord	: SI	306		PAGE 1 OF 1
		Position: H E: N Surface Level: Stickup: Inclination:	:		⁄el	Date Drille Drill Rig: Drilling Me Logged/Ch	Cardno 6WI	O Landcruiser ct Push
Depth (m)	Description of Stra	ata		Graphic Log	Depth (m)	Sample	PID (ppm)/ Contam Ranking	Remarks
0.0	ASPHALT FILL, Sandy SILT (ML) low plasticity, particity, no odour, no staining, minor graves	ale brown, firm, slig vel	ghtly		0.0	SB06/0.1	PID = 0 V=0/O=0	
0.4	Silty CLAY (CI) moderate plasticity, ora slightly moist, no odour, no staining	inge brown, hard,			0.4	SB06/0.5	PID = 0.2 V=0/O=0	
0.8					0.8	SB06/0.9	PID = 0.1 V=0/O=0	
and s	End of SB06 at 0.9 m Explanation of abbreviations ymbols, refer to Cardno or Rock Notes Notes See Bore Borehole	:: e Location Plan in Append e terminated due to refusa	dix A al on sus	pected	siltstone		roundwate groundwater ob	r Observations:

	Cardno Shaping the Future	Borehole	Rec	ord	: SI	307		PAGE 1 OF 1
Projec Locat		Position: H E N Surface Level: Stickup:	l:	nd Lev	rel	Drill Rig:	d: 27/01/201 Cardno 6WE thod: Direc) Landcruiser
Job N	o.: V161141G	-	Vertic	al		Logged/Ch	ecked: RM	H / DJL
Depth (m)	Description of Stra	ata		Graphic Log	Depth (m)	Sample	PID (ppm)/ Contam Ranking	Remarks
0.2	ASPHALT FILL, Sandy SILT (ML) low plasticity, paramoist, no odour, no staining, minor graves a slightly moist, no odour, no staining SILTSTONE (CW), completely weather with white, slightly moist, no staining End of SB07 at 0.9 m	nge brown, hard,			0.0	SB07/0.5	PID = 0.4 V=0/O=0 PID = 0.5 V=0/O=0	
Key: For ex	Notes See Bore	: e Location Plan in Apper terminated due to refus	idix A	stone			roundwate groundwater ob	r Observations:
and sy UCS	ymbols, refer to Cardno or Rock Notes							

)	Cardno Shaping the Future	Borehole	Rec	orc	I: SI	308		PAGE 1 OF 1
Projec	ct:	PSI Box Hill		:			Date Drille	d: 27/01/201	7
Locati	ion	: Spring Street, Box Hill	Surface Level:	l: Groui	nd Lev	/el			D Landcruiser
			Stickup:	N/A			Drilling Me	tnoa: Dire	ct Push
Job N	0.:	V161141G	Inclination:	Vertic	cal		Logged/Ch	ecked: RM	IH / DJL
Depth (m)		Description of Str	ata		Graphic Log	Depth (m)	Sample	PID (ppm)/ Contam Ranking	Remarks
0.2 - - - - - - - - - - - - - - - - - - -	Siltslig	L, Sandy SILT (ML) low plasticity, puttly moist, no odour, no staining, must calculate the state of the state	ange brown, hard,			0.0	SB08/0.1	PID = 0.5 V=0/O=0 PID = 0 V=0/O=0	
and sv	ymb	nation of abbreviations pols, refer to Cardno Rock Notes	E Location Plan in Apper e terminated due to refus	ndix A al on silt	stone			roundwater ob	r Observations:

	Cardno Shaping the Future	Borehole F	Record	l: SI	309		PAGE 1 OF 1
Projec		Position: H E:			Date Drille	d: 27/01/201	7
Locati	ion: Spring Street, Box Hill	N: Surface Level: 0 Stickup:		⁄el		Cardno 6WD	Landcruiser t Push
Job N	o.: V161141G	Inclination:	Vertical		Logged/Ch	necked: RMI	H / DJL
Depth (m)	Description of Stra	ata	Graphic Log	Depth (m)	Sample	PID (ppm)/ Contam Ranking	Remarks
0.2	FILL, Sandy SILT (ML) low plasticity, passightly moist, no odour, no staining, mi	nor gravels	irm,	0.0	SB09/0.1	PID = 0 V=0/O=0 PID = 0.3 V=0/O=0	
_	slightly moist, no odour, no staining	, ,		_			
-				_	SB09/0.75	PID = 0 V=0/O=0	
0.8 Key:	End of SB09 at 0.8 m	:		0.8	G	roundwater	· Observations:
For exand sy	kplanation of abbreviations ymbols, refer to Cardno or Rock Notes	e Location Plan in Append terminated due to refusal	IX A I on suspected	siltstone	No	groundwater obs	served

C	Cardno Shaping the Future	Borehole	Rec	ord	: SE	310		PAGE 1 OF 1
Projec Locat	ion: Spring Street, Box Hill	Surface Level:		nd Lev	⁄el	Date Drilled Drill Rig: Drilling Me	Cardno 6W[) Landcruiser
Job N	o.: V161141G	Stickup: Inclination:	N/A Vertic	al		Logged/Ch	ecked: RM	IH / DJL
Depth (m)	Description of Stra	ata		Graphic Log	Depth (m)	Sample	PID (ppm)/ Contam Ranking	Remarks
0.0	ASPHALT FILL, Sandy SILT (ML) low plasticity, paramoist, no odour, no staining, minor grants of the state of	nge brown, hard,			0.0	BH10/0.5	PID = 0 V=0/O=0 PID = 0.2 V=0/O=0	
Varia							roundwata	r Observations:
and s	Replanation of abbreviations ymbols, refer to Cardno or Rock Notes	: Location Plan in Apper terminated due to refus	ndix A al on silts	stone			groundwater ob	

)	Cardno Shaping the Future	Borehole l	Rec	orc	l: SI	B11		PAGE 1 OF 1
Projec	ct:	PSI Box Hill	Position: H	:			Date Dril	led: 27/01/20	17
Locati	ion:	Spring Street, Box Hill	٨				Drill Rig:	Cardno 6W	D Landcruiser
			Surface Level:		nd Le	/el	Drilling N	/lethod: Dire	ct Push
lah N		V4044440	Stickup:	N/A			1 1/4	al l l a.	## / D #
JOD N	0.:	V161141G	Inclination:	Vertio	cal		Loggea/C	Checked: RN	/IH / DJL
Depth (m)		Description of Stra	ata		Graphic Log	Depth (m)	Sample	PID (ppm)/ Contam Ranking	Remarks
0.2	bet	NCRETE double layered with crush-ween layers L, Gravelly SAND (SP) fine to coars				0.0	SB11/0.3	PID = 0.3 V=0/0=0	Concrete core from 0.0 to 0.3 m
0.4	gra	L, Gravery SAND (SP) fine to coars	e gramed, poony t, no odour, no sta	ining		0.4		V=0/O=0	
_	Silt	y CLAY (CI) moderate plasticity, ora htly moist, no odour, no staining	nge brown, hard,			_ _	SB11/0.5	PID = 0 V=0/O=0	
- - - 0.8 - - - 1.0	with	TSTONE (HW), highly weathered, on white, slightly moist, no staining	range brown mott	led		0.6	SB11/1.0	PID = 0.1 V=0/O=0	
	⊢no	d of SB11 at 1.1 m		_					
and sv	ymb	nation of abbreviations ols, refer to Cardno ock Notes	: E Location Plan in Appen terminated due to refus	dix A al on silt	stone			Groundwate No groundwater ob	r Observations: served

	Cardno Shaping the Future	Borehole	Rec	orc	l: SI	B12		PAGE 1 OF 1
Projec			E: N: Grour	nd Lev	vel	Drill Rig:	ed: 27/01/201 Cardno 6WD) Landcruiser
Job N	o. : V161141G	Stickup: Inclination:	N/A Vertic	al		Logged/C	hecked: RM	H / DJL
Depth (m)	Description of Str	ata		Graphic Log	Depth (m)	Sample	PID (ppm)/ Contam Ranking	Remarks
0.0	ASPHALT FILL, Silty GRAVEL (GP) fine to coarse graded, dark grey, dense, slightly mois staining, crushed bluestone	e grained, poorly t, no odour, no			0.0	SB12/0.1	PID = 0.2 V=0/O=0	
0.4 - - - - 0.6 - - - -	Silty CLAY (CI) moderate plasticity, ora slightly moist, no odour, no staining	ange brown, hard,			0.4	SB12/0.5	PID = 0.2 V=0/O=0	
1.0 - - - - - - - - - - - -	End of SB12 at 1.1 m Apple of SB12 at 1.1 m	e Location Plan in Appe e terminated due to refus	ndix A sal on suss		1.0	SB12/1.0	PID = 0 V=0/O=0	r Observations:
and sy UCS o	ymbols, refer to Cardno or Rock Notes							

	Cardno Shaping the Future	Borehole Red	ord: S	B14		PAGE 1 OF 1
		Position: H E: N: Surface Level: Grou Stickup: N/A Inclination: Vertice		Drill Rig: Drilling Me	Hand Tools ethod: Show Hand hecked: RMI	el auger
Depth (m)	Description of St	trata	Graphic Log Depth	Sample	PID (ppm)/ Contam Ranking	Remarks
0.2	FILL, Silty GRAVEL (GP) fine grained grey, dense, slightly moist, no odour, 20mm gravel	l, poorly graded, brown no staining, minor sand,	0.0	SB14/0.1	PID = 0 V=0/O=0	
0.8 Key:	End of SB14 at 0.8 m	9S:	0.8			Observations:
For exand s	xplanation of abbreviations ymbols, refer to Cardno Soil sa gravell sampling See Bc.	mple only collected at 0.1 as the l y and there was not enough soil a fig ore Location Plan in Appendix A ole terminated due to refusal on g			o groundwater obs	served

	Cardno Shaping the Future	Borehole	Rec	orc	I: SI	B15		PAGE 1 OF 1
Projec			<u>=</u> : N:				ed: 27/01/20	
Locati	ion: Spring Street, Box Hill	Surface Level:		nd Lev	/el			D Landcruiser
		Stickup:	N/A			Drilling IVI	ethod: Dire	Ct Push
Job N	o.: V161141G	Inclination:	Vertic	al		Logged/C	hecked: RN	/IH / DJL
Depth (m)	Description of Stra	ata		Graphic Log	Depth (m)	Sample	PID (ppm)/ Contam Ranking	Remarks
- - 0.2 - - - - 0.4 - -	CONCRETE double layered with crush between layers FILL, Gravelly SAND (SP) fine to coars graded, dark grey, dense, slightly mois Silty CLAY (CI) moderate plasticity, ora slightly moist, no odour, no staining	e grained, poorly t, no odour, no sta	aining		0.0	SB15/0.3	PID = 0.9 V=0/O=0 PID = 0 V=0/O=0	Concrete core from 0.0 to 0.3 m
0.6 - - - - - - - - - - - - -	SILTSTONE (HW), highly weathered, of strength, slightly moist, no staining	orange brown, har	d		0.6	SB15/1.0	PID = 0 V=0/O=0	
and s	Notes See Bon	: e Location Plan in Apper e terminated due to refus	ndix A sal on silt	stone				er Observations: ater observed

PARTICLE SIZES

	TERM	S	IZE ((mm)
BOULDE	BBLE AVEL Coarse Medium Fine ID Coarse Medium Fine	>200		
COBBLE		60	to	200
GRAVEL				
	Coarse	20	to	60
	Medium	6	to	20
	Fine	2	to	6
SAND				
	Coarse	0.6	to	2
	Medium	0.2	to	0.6
	Fine	0.06	to	0.2
SILT		0.002	to	0.06
CLAY				< 0.002

COHESIVE SOILS

TERM	UNDRAINED SHEAR STRENGTH (kPa)
Very Soft	0 to 12.5
Soft	12.5 to 25
Firm	25 to 50
Stiff	50 to 100
Very Stiff	100 to 200
Hard	≥ 200

COHESIONI ESS SOILS

TERM	'N' (SPT) VALUE (blows / 300mm)	RELATIVE DENSITY (%)	ANGLE SHEAR RESISTANCE (degrees)
Very Loose	0 to 4	< 15	25 to 30
Loose	4 to 10	15 to 35	27 to 32
Medium Dense	10 to 30	35 to 65	30 to 35
Dense	30 to 50	65 to 85	35 to 40
Very Dense	> 50	≥ 85	38 to 43

STRUCTURE

TERM	SIZE OF BLOCKS (mm)
Blocky	> 60
Cloddy	20 to 60
Nutty	6 to 20
Granular	0.6 to 6
Prismatic	Stated
Shattered	< 10

SAMPLES

BS Bulk sample Disturbed sample D

Undisturbed tube sample ('n' denotes internal dia in mm) U(n)

Undisturbed tube recovery Undisturbed tube non-recovery

SPT Disturbed sample

INDEX PROPERTIES

bulk density (t/m3) DD dry density (t/m3) field moisture content (%) mc $\mathsf{L}\mathsf{L}$ Liquid Limit (%) PLPlastic Limit (%) Ы Plastic Index (%)

FIELD TESTS

Field permeability test W Ρ Pressuremeter test ID Insitu density test

Standard Penetrometer Test (blows per 300 mm) SPT(9) =

(63.5 kg hammer dropped 760mm)

Pocket penetrometer (kPa) pp

IDENTIFICATION OF SOILS

COARSE GRAINED SOILS

Well graded gravels and gravel-sand mixtures, little or no fines

Poorly graded gravels and gravel-sand mixtures, little or no fines

Silty gravels and gravel- sandclay mixtures

Clayey gravels, gravelsand-clay mixture

Well graded sands and gravelly sands, little or no

Poorly graded sands and gravelly sands, little or no fines

Silty sand, sandy silt mixture

Clayey sands, sandy clay mixtures

FINE GRAINED SOILS

Inorganic silts, very fine sands, rock flour, silty or clayey fine sands of low plasticity Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays

Organic silts and organic silty clays of low plasticity

Inorganic silts, micaceous or diatomaceous fine sands or silts, elastic silts of high plasticity Inorganic clays of high plasticity, gravelly clays, sandy clays, silty

Organic clays and silts of medium to high plasticity

Peat and other highly organic soils

GROUNDWATER

Highly Organic

Soils

GW Groundwater depth (m) or level (RL)

Below ground level bgl Standing water level swl

PLATE 1: Northern car park – looking north-west (27 January 2017)

PLATE 2: Central / northern car park, showing proposed bore SB05 – looking west (27 January 2017)

PLATE 3: Central car park – looking south-west (27 January 2017)

PLATE 4: Central / southern car park – looking north (27 January 2017)

PLATE 5: South-west car park – looking south-west (27 January 2017)

PLATE 6: Recreation area, showing proposed bore SB14 – looking south-east (27 January 2017)

PLATE 7: Walk-way in south-west part of site – looking east (27 January 2017)

PLATE 8: Drill rig at bore SB02 in north car park – looking north-west (27 January 2017)

Chain of Custody

	s: Level 6, 501 Swanston Street, Melbourne, Vic, 3000 ail: david.louwrens@cardno.com.au Number: V161141G Site: Box Hill ory (name, phone, & contact person): Eurofins-mgt Krasselt (03) 8564 5051								ample	Analysis							
	obile: 0436 303 279				7	Sample N	latrix	pres	ervation					Analys	S		
	rne, Vic, 3000																
PM Email: david.louwrens@cardno.com.au																	
Project Number: V161141G	Site: Box Hill				1			1 1	1 1	1			1 1	1 1	-1	1 1	1 1
aboratory (name, phone, & contact person): Natalie Krasselt (03) 8564 5051	Eurofins-mgt							ce/ Ice Brick					U				9
Sample ID	Laboratory ID	Cantainan	Samp	oling	1_	ter		<u>8</u>	1-4-	20	+	-					Hor
Sample ID	Laboratory ID	Container	Date	Time	Soil	Water)e		2	B	Hd	0				I
SB01/0.1		JAR	27.1.17		TI			1			V						
SB01/0.5		1			T												V
SB61/0.9					T												V
SB 02/0.2					T						V						
SB02/0.5					T				18 5								/
SB02/0.85		1.0															V
SB 03/0.1											/						
SB 03/6.35																	V
SB03/0.5																	V
9 SB03 0.95					T												V
SB09/0·1									100	V		V	~				
SB 04/0.5																	V
SB04/0.9																	V
SB06/0.1											V						
B06/0.5																	V
SB06/0.9																	~
SB07/0.1											/						
SB0710.5						100											V
S\$07109																	V
Sporto.1		V	4		V			V			V						
ampler: I attest that the proper field sampling proceedu	res were used during the o	ollection of the	ese samples.			Sampler n	ame: (pr	int and sig	gnature)				Date:	7-	Illi	7	
elinquished by (Sampler): (print and signature)	De			30/1/1°	1	Time (0.15	Rec	ceived by	(Courier/Lab): (prin	and s	Date 35	3/17		Time	0	
elinquished by: (print and signature)	V			Date	-	Time	Rec	ceived by	(print and si	ignature	e) 2	Date	1/17		Time		
elinquished by: (print and signature)			C	Date		Time	Red	ceived by:	(print and si	ignature	9)	Date	////		Time		
Please supply results electronically in spreadshee	et and ESDAT files							R	por	1	1	4	53	201	51		
Furn around time: (24 hour/48 h		(ave)	Please circl					10	150	1	7	1	//		1		

Revision 1 Approved 23 May 2013 Please circle

Chain of Custody

PM Name: David Louwrens					Sample Matrix	Sample	Analysis								
Phone: 03 9831 6124 Fax: 03 8415 7788 Mobile	e: 0438 303 279				Sample Matrix	preservation			Allalysis						
Address: Level 6, 501 Swanston Street, Melbourne,	Vic, 3000														
PM Email: david.louwrens@cardno.com.au															
Project Number: V161141G	Site: Box Hill					1111	1 1 1	1 1 1							
Laboratory (name, phone, & contact person): Natalie Krasselt (03) 8564 5051	Eurofins-mgt					Brick	0	J		9					
Sample ID	Laboratory ID	Container	Sam	pling Time	Soil	lce/ lce	R2 B7	E E		HOOL					
SBOR 10.5		JAR	27.1.17			1				V					
SP09/0·1		1					V								
5809/0.5										V					
SB09/0.75										V					
S810/0.1							~								
SB10/0.5										V					
5810/0.9										V					
SB11/0:3							V								
SB11/0.5										V					
SBH/09 SBILLO										V					
SB12/0.1							V	V V							
SB12/0.5										V					
30/2/1.0										V					
5813/6.1							1								
581310.5										V					
SB13/1.0 SB14/0.1										V					
SB14/0.i							V								
SBIS/0.3 SBIS/0.5							V								
SB 15/0.5										V					
Sh15/10			V		V	V				V					
Sampler: I attest that the proper field sampling proceedures v	were used during the	collection of the	ese samples.		Sampler name:	(print and signature)	0	Date	27/1/1	7					
Relinquished by (Sampler): (print and signature)				Date 36 117	Time	Received by (Courier/La	b): (print and s [Date 2, 17	Time	AO					
Relinquished by: (print and signature)	Date	Time	Received by: (print and	signature) [30/1/n	Time									
Relinquished by: (print and signature)	Date	Time	Received by: (print and s	signature) [Date	Time									

Turn around time: (24 hour/48 hour/3 days/5 days)

Please circle

Chain of Custody

Sheet 3 of 3

Phone: 9831 6124 Fax: 0 Address: Level 4, 501 Swanston Street, N	203 :	279		Sample Matrix	Sam						Analysis							
Address: Level 4, 501 Swanston Street, M	Melbourne, Vic 30	00																
PM Email:	@cardno.com.au									18								
					-											,		
Laboratory (name, phone,fax no & contac	t person) Cox	man			1	9 1 1				1,4			1				-	
Natalie Krasselt	965	564 5051			1	47	P		1.	+	+							
Sample ID	Laboratory ID	Container	San	npling	Soil	3	10		85	TPH	Σ							
Qco1-270117		JAR	27/1		X		X		V									
A CO3_27017		Bottle	1		1	×	X				~							
Q (03-270)17 Q (04-270)17		Vial	1			×	×			~								
3.00		4 (0-4)																
				1														
Sampler: I attest that the proper field sampling p	roceedures were us	sed during the collection	of these samp	les.		Sampler name: (print a Rachel Heriot	nd signature	9		Date	77	lili	1					
Relinquished by (Sampler) (print and signature) Rachel Heriot		De	_	Date 3	01117	10.15	X	Courier/Lab): (print a		ure)	Date 3/0	711	7	Tir	10	D.		
Relinquished by: (print and signature)				Date		Time R	R20-1	(print and signature)	+C10	V	Date 30	, .	7	Tir	ne			
Relinquished by: (print and signature)				Date		Time R	eceived by:	(print and signature)	7		Date	1111	/	Tir	ne			

Turn around time: (24 hour/48 hour/3 days/5 days) Please circle

#5 5206/

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Yelun 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: Cardno Lane Piper Pty Ltd

Contact name: **David Louwrens BOX HILL** Project name: Project ID: V161141G COC number: Not provided

Turn around time: 5 Day

Jan 30, 2017 10:50 AM Date/Time received:

Eurofins | mgt reference: 532061

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} All samples have been received as described on the above COC.
- \mathbf{V} COC has been completed correctly.
- \square Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \mathbf{V} Sample containers for volatile analysis received with zero headspace.
- \boxtimes Some samples have been subcontracted.
- Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Natalie Krasselt on Phone: (+61) (3) 8564 5000 or by e.mail: Natalie Krasselt@eurofins.com

Results will be delivered electronically via e.mail to David Louwrens - david.louwrens@cardno.com.au.

Cardno Victoria Pty Ltd Level 4, 501 Swanston Street Melbourne VIC 3000

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: David Louwrens

Report532061-SProject nameBOX HILLProject IDV161141GReceived DateJan 30, 2017

Client Sample ID			SB01/0.1	SB02/0.2	SB03/0.1	SB04/0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ja17709	M17-Ja17710	M17-Ja17711	M17-Ja17712
Date Sampled			Jan 27, 2017	Jan 27, 2017	Jan 27, 2017	Jan 27, 2017
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 1999 NEPM F	ractions					
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	-
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	-
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	-
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	-
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	-
втех	<u> </u>					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	76	79	74	-
Total Recoverable Hydrocarbons - 2013 NEPM F	ractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	-
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	-
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	-
Polycyclic Aromatic Hydrocarbons						
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	2.1	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	2.3	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	2.6	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	1.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	1.6	< 0.5	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	< 0.5	1.6	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	0.7	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	1.0	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	1.6	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	2.7	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	0.6	< 0.5	< 0.5

					1	
Client Sample ID			SB01/0.1	SB02/0.2	SB03/0.1	SB04/0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ja17709	M17-Ja17710	M17-Ja17711	M17-Ja17712
Date Sampled			Jan 27, 2017	Jan 27, 2017	Jan 27, 2017	Jan 27, 2017
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	1.8	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	2.9	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	16	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	73	87	86	102
p-Terphenyl-d14 (surr.)	1	%	70	82	82	72
Organochlorine Pesticides	·	•				
Bifenthrin	0.05	mg/kg	-	-	-	< 0.05
Organophosphorus Pesticides		,				
Chlorpyrifos	0.2	mg/kg	-	-	-	< 0.2
Polychlorinated Biphenyls	•					
Aroclor-1016	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1221	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1232	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1242	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1248	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1254	0.1	mg/kg	-	-	-	< 0.1
Aroclor-1260	0.1	mg/kg	-	-	-	< 0.1
Total PCB*	0.1	mg/kg	-	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	-	-	-	95
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	86
Triazines						
Atrazine	0.2	mg/kg	-	-	-	< 0.2
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	-
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100	-
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	-
NEPM 2013 Acid Herbicides						
Picloram*	0.5	mg/kg	-	-	-	< 0.5
2.4-D	0.5	mg/kg	-	-	-	< 0.5
2.4.5-T	0.5	mg/kg	-	-	-	< 0.5
MCPA	0.5	mg/kg	-	-	-	< 0.5
MCPB	0.5	mg/kg	-	-	-	< 0.5
Mecoprop	0.5	mg/kg	-	-	-	< 0.5
Warfarin (surr.)	1	%	-	-	-	87
NEPM 2013 Organochlorine Pesticides						
Endosulfan sulphate	0.05	mg/kg	-	-	-	< 0.05
Mirex	0.01	mg/kg	-	-	-	< 0.01
4.4'-DDD	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDE	0.05	mg/kg	-	-	-	< 0.05
4.4'-DDT	0.05	mg/kg	-	-	-	< 0.05
Aldrin	0.05	mg/kg	-	-	-	< 0.05
Chlordanes - Total	0.1	mg/kg	-	-	-	< 0.1
Dieldrin	0.05	mg/kg	-	-	-	< 0.05
Endosulfan I	0.05	mg/kg	-	-	-	< 0.05
Endosulfan II	0.05	mg/kg	-	-	-	< 0.05
Endrin	0.05	mg/kg	-	-	-	< 0.05
Heptachlor Hexachlorobenzene	0.05 0.05	mg/kg mg/kg	-	-	-	< 0.05 < 0.05

Report Number: 532061-S

Client Sample ID			SB01/0.1	SB02/0.2	SB03/0.1	SB04/0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ja17709	M17-Ja17710	M17-Ja17711	M17-Ja17712
Date Sampled			Jan 27, 2017	Jan 27, 2017	Jan 27, 2017	Jan 27, 2017
Test/Reference	LOR	Unit				
NEPM 2013 Organochlorine Pesticides	-					
Methoxychlor	0.05	mg/kg	-	-	-	< 0.05
Toxaphene	1	mg/kg	-	-	-	< 1
Dibutylchlorendate (surr.)	1	%	-	-	-	95
Tetrachloro-m-xylene (surr.)	1	%	-	-	-	86
NEPM 2013 Phenois	·	•				
2-Methylphenol (o-Cresol)	0.2	mg/kg	-	-	-	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	-	-	-	< 0.4
Pentachlorophenol	1.0	mg/kg	-	-	-	< 1
Phenol	0.5	mg/kg	-	-	-	< 0.5
Phenol-d6 (surr.)	1	%	-	-	-	84
Chromium (hexavalent)	1	mg/kg	-	-	-	< 1
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	-	-	-	200
Cyanide (free)	5	mg/kg	-	-	-	< 5
pH (1:5 Aqueous extract)	0.1	pH Units	-	-	-	9.9
% Moisture	1	%	10	7.9	12	5.1
Heavy Metals						
Arsenic	2	mg/kg	3.9	3.2	3.0	< 2
Beryllium	2	mg/kg	-	-	-	< 2
Boron	10	mg/kg	-	-	-	< 10
Cadmium	0.4	mg/kg	< 0.4	0.8	< 0.4	< 0.4
Chromium	5	mg/kg	24	18	22	35
Cobalt	5	mg/kg	-	-	-	43
Copper	5	mg/kg	65	60	9.3	51
Lead	5	mg/kg	160	150	7.5	< 5
Manganese	5	mg/kg	-	-	-	940
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	13	9.4	12	150
Selenium	2	mg/kg	-	-	-	< 2
Zinc	5	mg/kg	270	370	43	75
Ion Exchange Properties						
Cation Exchange Capacity	0.05	meq/100g	-	-	-	23

Client Sample ID Sample Matrix Eurofins mgt Sample No. Date Sampled Test/Reference Total Recoverable Hydrocarbons - 1999 NEPM Fract	LOR	Unit	SB06/0.1 Soil M17-Ja17713 Jan 27, 2017	SB07/0.1 Soil M17-Ja17714 Jan 27, 2017	SB08/0.1 Soil M17-Ja17715 Jan 27, 2017	SB09/0.1 Soil M17-Ja17716 Jan 27, 2017
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	< 50	< 50

	1	1				
Client Sample ID			SB06/0.1	SB07/0.1	SB08/0.1	SB09/0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ja17713	M17-Ja17714	M17-Ja17715	M17-Ja17716
Date Sampled			Jan 27, 2017	Jan 27, 2017	Jan 27, 2017	Jan 27, 2017
Test/Reference	LOR	Unit				
BTEX	'	"				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	97	85	89	75
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions					-
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
Polycyclic Aromatic Hydrocarbons	,	, . 9	1 20	1_0	120	1
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	4.6	2.1	1.3
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	4.6	2.3	1.5
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	4.6	2.6	1.8
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	2.1	1.1	0.7
Benzo(a)pyrene	0.5	mg/kg	< 0.5	3.2	1.6	1.0
Benzo(b&j)fluoranthene ^{N07}	0.5		< 0.5	2.7	1.5	0.9
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	2.7	1.0	0.9
Benzo(k)fluoranthene	0.5	mg/kg mg/kg	< 0.5	2.0	1.0	0.6
Chrysene	0.5	mg/kg	< 0.5	2.2	1.3	0.8
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	3.3	1.9	1.1
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	1.7	0.7	0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	1.6	0.9	0.6
Pyrene	0.5	mg/kg	< 0.5	3.7	2.2	1.1
Total PAH*	0.5	mg/kg	< 0.5	25.3	13.2	8
2-Fluorobiphenyl (surr.)	1	%	76	76	97	85
p-Terphenyl-d14 (surr.)	1	%	69	70	91	77
Total Recoverable Hydrocarbons - 2013 NEPM Fraction		/0	09	70	31	11
	50	malka	- FO	, E0	- 50	, EO
TRH >C10-C16 TRH >C16-C34	100	mg/kg mg/kg	< 50 < 100	< 50 < 100	< 50 < 100	< 50 < 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100	< 100
O/ Majeture		0/	0.5	4.0	5.0	F 0
% Moisture	1	%	3.5	4.6	5.6	5.0
Heavy Metals			0.7	4.0	40	0.0
Arsenic	2	mg/kg	3.7	4.8	12	8.3
Cadmium	0.4	mg/kg	< 0.4	0.6	< 0.4	< 0.4
Chromium	5	mg/kg	22	20	21	20
Copper	5	mg/kg	30	34	28	17
Lead	5	mg/kg	34	41	110	87
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	0.1
Nickel	5	mg/kg	84	78	23	14
Zinc	5	mg/kg	79	88	120	91

Client Sample ID			SB010/0.1	SB011/0.3	SB012/0.1	SB013/0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ja17717	M17-Ja17718	M17-Ja17719	M17-Ja17720
Date Sampled			Jan 27, 2017	Jan 27, 2017	Jan 27, 2017	Jan 27, 2017
Test/Reference	LOR	Unit	,	,	,	,
Total Recoverable Hydrocarbons - 1999 NEPM		Onic				
TRH C6-C9	20	mg/kg	< 20	< 20	-	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	_	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	-	63
TRH C29-C36	50	mg/kg	< 50	< 50	-	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	< 50	_	63
ВТЕХ		1 5 5				
Benzene	0.1	mg/kg	< 0.1	< 0.1	_	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	_	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	-	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	-	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	_	< 0.3
4-Bromofluorobenzene (surr.)	1	%	85	56	_	93
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	-	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	-	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	_	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	_	< 20
Polycyclic Aromatic Hydrocarbons		1 9 9	. = \$. = 5		
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	3.0
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	3.2
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	3.5
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.7
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	2.3
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	2.0
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.2
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.6
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.7
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	3.0
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.0
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	1.1
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	3.2
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	18.8
2-Fluorobiphenyl (surr.)	1	%	76	88	100	85
p-Terphenyl-d14 (surr.)	1	%	69	84	71	78
Organochlorine Pesticides						
Bifenthrin	0.05	mg/kg	-	-	< 0.05	-
Organophosphorus Pesticides						
Chlorpyrifos	0.2	mg/kg	-	-	< 0.2	-

Client Sample ID			SB010/0.1	SB011/0.3	SB012/0.1	SB013/0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ja17717	M17-Ja17718	M17-Ja17719	M17-Ja17720
Date Sampled			Jan 27, 2017	Jan 27, 2017	Jan 27, 2017	Jan 27, 2017
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls	·					
Aroclor-1016	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1221	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1232	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1242	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1248	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1254	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1260	0.1	mg/kg	-	-	< 0.1	-
Total PCB*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	97	-
Fetrachloro-m-xylene (surr.)	1	%	-	-	86	-
Friazines	<u> </u>				<u> </u>	
Atrazine	0.2	mg/kg	-	-	< 0.2	-
Fotal Recoverable Hydrocarbons - 2013 NEPM F	•					
FRH >C10-C16	50	mg/kg	< 50	< 50	-	< 50
FRH >C16-C34	100	mg/kg	< 100	< 100	_	< 100
FRH >C34-C40	100	mg/kg	< 100	< 100	_	< 100
NEPM 2013 Acid Herbicides	1	1				
Picloram*	0.5	mg/kg	-	-	< 0.5	_
2.4-D	0.5	mg/kg	_	_	< 0.5	_
2.4.5-T	0.5	mg/kg	_	_	< 0.5	_
исра Исра	0.5	mg/kg	_	_	< 0.5	_
МСРВ	0.5	mg/kg	_	_	< 0.5	_
Mecoprop	0.5	mg/kg	_	_	< 0.5	_
Warfarin (surr.)	1	%	_	_	89	_
NEPM 2013 Organochlorine Pesticides		,,,				
Endosulfan sulphate	0.05	mg/kg	_	_	< 0.05	_
Mirex	0.01	mg/kg	_	_	< 0.01	_
4.4'-DDD	0.05	mg/kg	_	_	< 0.05	_
1.4'-DDE	0.05	mg/kg	_	_	< 0.05	_
1.4'-DDT	0.05	mg/kg	_	_	< 0.05	_
Aldrin	0.05	mg/kg	_	_	< 0.05	_
Chlordanes - Total	0.1	mg/kg	_	_	< 0.1	_
Dieldrin	0.05	mg/kg	_	_	< 0.05	_
Endosulfan I	0.05	mg/kg	_	_	< 0.05	_
Endosulfan II	0.05	mg/kg	_	_	< 0.05	_
Endrin	0.05	mg/kg	_	_	< 0.05	_
Heptachlor	0.05	mg/kg	_	-	< 0.05	_
Hexachlorobenzene	0.05	mg/kg	_	-	< 0.05	_
Methoxychlor	0.05	mg/kg	_	_	< 0.05	_
Toxaphene	1	mg/kg	_	_	< 1	_
Dibutylchlorendate (surr.)	1	%	_	_	97	_
Fetrachloro-m-xylene (surr.)	1	%	_	_	86	_
NEPM 2013 Phenois		,,,				
2-Methylphenol (o-Cresol)	0.2	mg/kg	_	-	< 0.2	_
3&4-Methylphenol (m&p-Cresol)	0.2	mg/kg	-	-	< 0.2	_
Pentachlorophenol	1.0	mg/kg	-	-	< 1	_
Phenol	0.5	mg/kg	-	-	< 0.5	-
Phenol-d6 (surr.)	1	mg/kg %	-	-	81	_

Client Sample ID			SB010/0.1	SB011/0.3	SB012/0.1	SB013/0.1
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ja17717	M17-Ja17718	M17-Ja17719	M17-Ja17720
Date Sampled			Jan 27, 2017	Jan 27, 2017	Jan 27, 2017	Jan 27, 2017
Test/Reference	LOR	Unit				
	T.					
Chromium (hexavalent)	1	mg/kg	-	-	< 1	-
Conductivity (1:5 aqueous extract at 25°C)	10	uS/cm	-	-	120	-
Cyanide (free)	5	mg/kg	-	-	< 5	-
pH (1:5 Aqueous extract)	0.1	pH Units	-	-	8.3	-
% Moisture	1	%	2.9	24	8.8	10
Heavy Metals						
Arsenic	2	mg/kg	5.0	2.1	11	3.8
Beryllium	2	mg/kg	-	-	< 2	-
Boron	10	mg/kg	-	-	18	-
Cadmium	0.4	mg/kg	0.6	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	17	18	34	17
Cobalt	5	mg/kg	-	-	11	-
Copper	5	mg/kg	18	35	26	24
Lead	5	mg/kg	21	9.0	16	110
Manganese	5	mg/kg	-	-	200	-
Mercury	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Nickel	5	mg/kg	14	65	41	20
Selenium	2	mg/kg	-	-	< 2	-
Zinc	5	mg/kg	66	28	52	80
Ion Exchange Properties						
Cation Exchange Capacity	0.05	meq/100g	-	-	25	-

Client Sample ID			SB014/0.1 Soil	SB15/0.3	QC01_270117 Soil
Sample Matrix			1	Soil	
Eurofins mgt Sample No.			M17-Ja17721	M17-Ja17722	M17-Ja17723
Date Sampled			Jan 27, 2017	Jan 27, 2017	Jan 27, 2017
Test/Reference	LOR	Unit			
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions				
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	140	< 50
TRH C29-C36	50	mg/kg	< 50	77	< 50
TRH C10-36 (Total)	50	mg/kg	< 50	217	< 50
BTEX					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total	0.3	mg/kg	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	80	85	103
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20

Client Sample ID			SB014/0.1	SB15/0.3	QC01_270117
Sample Matrix			Soil	Soil	Soil
Eurofins mgt Sample No.			M17-Ja17721	M17-Ja17722	M17-Ja17723
Date Sampled			Jan 27, 2017	Jan 27, 2017	Jan 27, 2017
Test/Reference	LOR	Unit	,	,	,
Polycyclic Aromatic Hydrocarbons	1 2011	0			
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	0.7	_
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	1.1	_
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.4	_
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	_
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	_
Anthracene	0.5	mg/kg	< 0.5	< 0.5	_
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	_
Benzo(a)pyrene	0.5	mg/kg	< 0.5	0.7	-
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	-
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	_
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	_
Chrysene	0.5	mg/kg	< 0.5	< 0.5	_
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	_
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	_
Fluorene	0.5	mg/kg	< 0.5	< 0.5	-
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	-
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	-
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	-
Pyrene	0.5	mg/kg	< 0.5	< 0.5	-
Total PAH*	0.5	mg/kg	< 0.5	0.7	-
2-Fluorobiphenyl (surr.)	1	%	72	70	-
p-Terphenyl-d14 (surr.)	1	%	80	73	-
Total Recoverable Hydrocarbons - 2013 NEPN	l Fractions				
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	200	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
	•				
% Moisture	1	%	3.9	19	15
Heavy Metals	•	•			
Arsenic	2	mg/kg	< 2	3.6	5.7
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	5.9	26	45
Copper	5	mg/kg	8.9	20	28
Lead	5	mg/kg	9.2	16	26
Mercury	0.1	mg/kg	< 0.1	< 0.1	-
Nickel	5	mg/kg	< 5	37	40
Zinc	5	mg/kg	29	55	69

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B5			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Feb 01, 2017	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Melbourne	Feb 01, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Feb 01, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Feb 01, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Metals M7	Melbourne	Feb 01, 2017	180 Day
- Method: USEPA 6010/6020 Heavy Metals			
Eurofins mgt Suite B7			
Polycyclic Aromatic Hydrocarbons	Melbourne	Feb 01, 2017	14 Day
- Method: USEPA 8270 Polycyclic Aromatic Hydrocarbons			
Metals M8	Melbourne	Feb 01, 2017	28 Days
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding Me	ethyl Mercury/PBDE		
Organochlorine Pesticides	Melbourne	Feb 01, 2017	14 Day
- Method: USEPA 8081 Organochlorine Pesticides			
Organophosphorus Pesticides	Melbourne	Feb 01, 2017	14 Day
- Method: LTM-ORG-2200 Organophosphorus Pesticides by GC-MS			
Polychlorinated Biphenyls	Melbourne	Feb 01, 2017	28 Days
- Method: USEPA 8082 Polychlorinated Biphenyls			
Triazines	Melbourne	Feb 01, 2017	14 Day
- Method: USEPA 8270			
NEPM 2013 Acid Herbicides	Melbourne	Feb 01, 2017	14 Day
- Method: MGT 530			
NEPM 2013 Organochlorine Pesticides	Melbourne	Feb 01, 2017	14 Day
- Method: USEPA 8081 Organochlorine Pesticides			
NEPM 2013 Phenols	Melbourne	Feb 01, 2017	14 Day
- Method: USEPA 8270 Phenols			
Chromium (hexavalent)	Melbourne	Feb 01, 2017	28 Day
- Method: APHA 3500-Cr Hexavalent Chromium- (Extraction:- USEPA3060)			
NEPM 2013 Metals : Metals M12	Melbourne	Feb 01, 2017	28 Day
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
Heavy Metals	Melbourne	Feb 01, 2017	180 Day
- Method: LTM-MET-3030 by ICP-OES (hydride ICP-OES for Mercury)			
Conductivity (1:5 aqueous extract at 25°C)	Melbourne	Feb 01, 2017	7 Day
- Method: LTM-INO-4030			
Ion Exchange Properties	Melbourne	Feb 02, 2017	
pH (1:5 Aqueous extract)	Melbourne	Feb 01, 2017	7 Day
- Method: LTM-GEN-7090 pH in soil by ISE			
% Moisture	Melbourne	Jan 31, 2017	14 Day
- Method: LTM-GEN-7080 Moisture			

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Company Name: Cardno Lane Piper Pty Ltd

Address: Level 4, 501 Swanston Street

Melbourne VIC 3000

Project Name: BOX HILL Project ID: V161141G

Order No.: Received: Jan 30, 2017 10:50 AM

 Report #:
 532061
 Due:
 Feb 6, 2017

 Phone:
 8415 7777
 Priority:
 5 Day

8415 7788 Contact Name: David Louwrens

Eurofins | mgt Analytical Services Manager : Natalie Krasselt

		Sa	mple Detail			HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M7	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Eurofins mgt Suite B7	Eurofins mgt Suite B5
Melk	ourne Laborato	ory - NATA Site	# 1254 & 142	271		Х	Х	Х	Х	Х	Х	Х	Х	Χ
Sydi	ney Laboratory	- NATA Site # 1	8217											
Bris	bane Laborator	y - NATA Site #	20794											
Pert	h Laboratory - N	NATA Site # 182	17											
Exte	rnal Laboratory	1												
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	SB01/0.1	Jan 27, 2017		Soil	M17-Ja17709					Х			Х	
2	SB02/0.2	Jan 27, 2017		Soil	M17-Ja17710					Х			Х	
3	SB03/0.1	Jan 27, 2017		Soil	M17-Ja17711					Х			Х	
4	SB04/0.1	Jan 27, 2017		Soil	M17-Ja17712		Х			Х	Х	Х		
5	SB06/0.1	Jan 27, 2017		Soil	M17-Ja17713					Х			Х	
6	SB07/0.1	Jan 27, 2017		Soil	M17-Ja17714					Х			Х	
7	SB08/0.1	Jan 27, 2017		Soil	M17-Ja17715					Х			Х	\square
8	SB09/0.1	Jan 27, 2017		Soil	M17-Ja17716					Х			Х	\square
9	SB010/0.1	Jan 27, 2017		Soil	M17-Ja17717					Х			Х	

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Page 10 of 24

Date Reported:Feb 06, 2017

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +613 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Company Name: Cardno Lane Piper Pty Ltd

Address: Level 4, 501 Swanston Street

Melbourne VIC 3000

Project Name: BOX HILL Project ID: V161141G

Order No.: Received: Jan 30, 2017 10:50 AM

 Report #:
 532061
 Due:
 Feb 6, 2017

 Phone:
 8415 7777
 Priority:
 5 Day

8415 7788 Contact Name: David Louwrens

Eurofins | mgt Analytical Services Manager : Natalie Krasselt

		Sam	ple Detail		HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M7	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Eurofins mgt Suite B7	Eurofins mgt Suite B5
Melk	oourne Laborato	ry - NATA Site #	1254 & 14271		Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	NATA Site # 182	17										
Bris	bane Laboratory	/ - NATA Site # 20)794										
Pert	h Laboratory - N	ATA Site # 18217	<u>'</u>										
10	SB011/0.3	Jan 27, 2017	Soil	M17-Ja17718					Х			Χ	
11	SB012/0.1	Jan 27, 2017	Soil	M17-Ja17719		Х			Х	Х	Χ		
12	SB013/0.1	Jan 27, 2017	Soil	M17-Ja17720					Х			Χ	
13	SB014/0.1	Jan 27, 2017	Soil	M17-Ja17721					Х			Χ	
14	SB15/0.3	Jan 27, 2017	Soil	M17-Ja17722					Х			Χ	
15	QC01_270117	Jan 27, 2017	Soil	M17-Ja17723					Х				Х
16	QC03_270117	Jan 27, 2017	Water	M17-Ja17724				Х					
17	QC04_270117	Jan 27, 2017	Water	M17-Ja17725			Х						
18	SB01/0.5	Jan 27, 2017	Soil	M17-Ja17726	Х								
19	SB01/0.9	Jan 27, 2017	Soil	M17-Ja17727	Х								
20	SB02/0.5	Jan 27, 2017	Soil	M17-Ja17728	Х								
21	SB02/0.85	Jan 27, 2017	Soil	M17-Ja17729	Х								

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

_ ____

Page 11 of 24

Date Reported:Feb 06, 2017

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Company Name: Cardno Lane Piper Pty Ltd

Address: Level 4, 501 Swanston Street

Melbourne VIC 3000

Project Name: BOX HILL Project ID: V161141G

Order No.: Received: Jan 30, 2017 10:50 AM

 Report #:
 532061
 Due:
 Feb 6, 2017

 Phone:
 8415 7777
 Priority:
 5 Day

8415 7788 Contact Name: David Louwrens

Eurofins | mgt Analytical Services Manager : Natalie Krasselt

		Sample	e Detail		HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M7	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Eurofins mgt Suite B7	Eurofins mgt Suite B5
Mell	ourne Laborate	ory - NATA Site # 12	54 & 14271		Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	- NATA Site # 18217	•										
Bris	bane Laborator	y - NATA Site # 2079	94										
Pert	h Laboratory - I	NATA Site # 18217											
22	SB03/0.35	Jan 27, 2017	Soil	M17-Ja17730	Х								
23	SB03/0.5	Jan 27, 2017	Soil	M17-Ja17731	Х								
24	SB03/0.95	Jan 27, 2017	Soil	M17-Ja17732	Х								
25	SB04/0.5	Jan 27, 2017	Soil	M17-Ja17733	Х								
26	SB04/0.9	Jan 27, 2017	Soil	M17-Ja17734	Х								
27	SB06/0.5	Jan 27, 2017	Soil	M17-Ja17735	Х								
28	SB06/0.9	Jan 27, 2017	Soil	M17-Ja17736	Х								
29	SB07/0.5	Jan 27, 2017	Soil	M17-Ja17737	Х								
30	SB07/0.9	Jan 27, 2017	Soil	M17-Ja17738	Х								
31	SB08/0.5	Jan 27, 2017	Soil	M17-Ja17739	Х								
32	SB09/0.5	Jan 27, 2017	Soil	M17-Ja17740	Х								
33	SB09/0.75	Jan 27, 2017	Soil	M17-Ja17741	Х								

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000 Page 12 of 24

Date Reported:Feb 06, 2017

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271

Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Brisbane I/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Company Name: Cardno Lane Piper Pty Ltd

Address: Level 4, 501 Swanston Street

> Melbourne VIC 3000

Project Name: BOX HILL Project ID: V161141G Order No.: Received: Jan 30, 2017 10:50 AM

Report #: 532061 Due: Feb 6, 2017 Phone: 8415 7777 Priority: 5 Day

Fax: 8415 7788 **Contact Name: David Louwrens**

Eurofins | mgt Analytical Services Manager : Natalie Krasselt

		Sample	Detail		HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M7	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Eurofins mgt Suite B7	Eurofins mgt Suite B5
Mell	oourne Laborat	tory - NATA Site # 125	54 & 14271		Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	/ - NATA Site # 18217											
Bris	bane Laborato	ry - NATA Site # 2079	4										
Pert	h Laboratory -	NATA Site # 18217											
34	SB010/0.5	Jan 27, 2017	Soil	M17-Ja17742	Х								
35	SB010/0.9	Jan 27, 2017	Soil	M17-Ja17743	Х								
36	SB011/0.5	Jan 27, 2017	Soil	M17-Ja17744	Х								
37	SB011/1.0	Jan 27, 2017	Soil	M17-Ja17745	Х								
38	SB012/0.5	Jan 27, 2017	Soil	M17-Ja17746	Х								
39	SB012/1.0	Jan 27, 2017	Soil	M17-Ja17747	Х								
40	SB013/0.5	Jan 27, 2017	Soil	M17-Ja17748	Х								
41	SB013/1.0	Jan 27, 2017	Soil	M17-Ja17749	Х								
42	SB015/0.5	Jan 27, 2017	Soil	M17-Ja17750	Х								
43	SB015/1.0	Jan 27, 2017	Soil	M17-Ja17751	Х								
Test	Counts				26	2	1	1	15	2	2	12	1

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 13 of 24

Date Reported:Feb 06, 2017

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported
 in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX					
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank	1 5 5				
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	1	< 0.5	0.5	Pass	
· · · · · · ·	mg/kg				
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Organophosphorus Pesticides		.00	0.0	Dana	
Chlorpyrifos	mg/kg	< 0.2	0.2	Pass	
Method Blank					
Polychlorinated Biphenyls	w · //	.04		D-	-
Aroclor-1016	mg/kg	< 0.1	0.1	Pass	
Aroclor-1221	mg/kg	< 0.1	0.1	Pass	
Aroclor-1232	mg/kg	< 0.1	0.1	Pass	-
Aroclor-1242	mg/kg	< 0.1	0.1	Pass	-
Aroclor-1248	mg/kg	< 0.1	0.1	Pass	-
Aroclor-1254	mg/kg	< 0.1	0.1	Pass	-
Aroclor-1260	mg/kg	< 0.1	0.1	Pass	
Total PCB*	mg/kg	< 0.1	0.1	Pass	
Method Blank					
Triazines	1			1	
Atrazine	mg/kg	< 0.2	0.2	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fract	tions				
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
Method Blank	1 0 0	·			
NEPM 2013 Acid Herbicides					
Picloram*	mg/kg	< 0.5	0.5	Pass	
2.4-D	mg/kg	< 0.5	0.5	Pass	
2.4.5-T	mg/kg	< 0.5	0.5	Pass	
MCPA	mg/kg	< 0.5	0.5	Pass	
MCPB	mg/kg	< 0.5	0.5	Pass	
Mecoprop	mg/kg	< 0.5	0.5	Pass	
Method Blank	IIIg/kg	\ 0.5	0.5	1 033	
		T T			
NEPM 2013 Organochlorine Pesticides Endosulfan sulphate	ma/les	- 0.0E	0.05	Pass	
	mg/kg	< 0.05		†	
4.4'-DDD	mg/kg	< 0.05	0.05	Pass	
4.4'-DDE	mg/kg	< 0.05	0.05	Pass	
4.4'-DDT	mg/kg	< 0.05	0.05	Pass	
Aldrin	mg/kg	< 0.05	0.05	Pass	
Chlordanes - Total	mg/kg	< 0.1	0.1	Pass	
Dieldrin	mg/kg	< 0.05	0.05	Pass	
Endosulfan I	mg/kg	< 0.05	0.05	Pass	
Endosulfan II	mg/kg	< 0.05	0.05	Pass	
Endrin	mg/kg	< 0.05	0.05	Pass	
Heptachlor	mg/kg	< 0.05	0.05	Pass	
Hexachlorobenzene	mg/kg	< 0.05	0.05	Pass	
Methoxychlor	mg/kg	< 0.05	0.05	Pass	
Toxaphene	mg/kg	< 1	1	Pass	
Method Blank					
NEPM 2013 Phenols					
2-Methylphenol (o-Cresol)	mg/kg	< 0.2	0.2	Pass	
3&4-Methylphenol (m&p-Cresol)	mg/kg	< 0.4	0.4	Pass	
Pentachlorophenol	mg/kg	< 1	1.0	Pass	
Phenol	mg/kg	< 0.5	0.5	Pass	
Method Blank		10.0	, , , ,		
Chromium (hexavalent)	mg/kg	< 1	1	Pass	
Cyanide (free)	mg/kg	< 5	5	Pass	
Method Blank	ı mg/kg			1 455	
Heavy Metals				I	
Arsenic	mg/kg	< 2	2	Pass	
		< 2	2		
Beryllium	mg/kg		0.4	Pass	
Chromium	mg/kg	< 0.4		Pass	
Chromium	mg/kg	< 5	5	Pass	
Cobalt	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Manganese	mg/kg	< 5	5	Pass	
Mercury	mg/kg	< 0.1	0.1	Pass	
Nickel	mg/kg	< 5	5	Pass	
Selenium	mg/kg	< 2	2	Pass	
Zinc	mg/kg	< 5	5	Pass	
Method Blank					
Ion Exchange Properties				1	1

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Cation Exchange Capacity	meq/100g	< 0.05	0.05	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 1999 NEPM Fra	ctions				
TRH C6-C9	%	129	70-130	Pass	
TRH C10-C14	%	106	70-130	Pass	
LCS - % Recovery					
ВТЕХ					
Benzene	%	91	70-130	Pass	
Toluene	%	95	70-130	Pass	
Ethylbenzene	%	100	70-130	Pass	
m&p-Xylenes	%	100	70-130	Pass	
Xylenes - Total	%	100	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fra	ctions				
Naphthalene	%	110	70-130	Pass	
TRH C6-C10	%	108	70-130	Pass	
LCS - % Recovery	1		, , , , , , , ,		
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	84	70-130	Pass	
Acenaphthylene	%	80	70-130	Pass	
Anthracene	%	71	70-130	Pass	
Benz(a)anthracene	%	89	70-130	Pass	
Benzo(a)pyrene	%	108	70-130	Pass	
Benzo(b&j)fluoranthene	%	119	70-130	Pass	
Benzo(g.h.i)perylene	%	95	70-130	Pass	
Benzo(k)fluoranthene	%	120	70-130	Pass	
Chrysene	%	99	70-130	Pass	
Dibenz(a.h)anthracene	%	90	70-130	Pass	
Fluoranthene	%	89	70-130	Pass	
Fluorene	%	84	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	87	70-130	Pass	
Naphthalene	%	78	70-130	Pass	
Phenanthrene	%	85	70-130	Pass	
Pyrene	%	91	70-130	Pass	
LCS - % Recovery	/0	91	1 70-130	_ F a S S	
Polychlorinated Biphenyls			Τ	l	
Aroclor-1260	%	80	70-130	Pass	
LCS - % Recovery	70	00	70-130	Fass	
Total Recoverable Hydrocarbons - 2013 NEPM Fra	otions		T I		
TRH >C10-C16	%	115	70-130	Pass	
LCS - % Recovery	70	110	70-130	Fass	
NEPM 2013 Acid Herbicides	%	104	70 120	Pass	
Picloram*	%	104	70-130		
2.4-D		119	70-130	Pass	
2.4.5-T	%	124	70-130	Pass	
MCPA MCPR	%	122	70-130	Pass	
MCPB Macantan	%	125	70-130	Pass	
Mecoprop	%	96	70-130	Pass	
LCS - % Recovery					
NEPM 2013 Organochlorine Pesticides		100		_	
Endosulfan sulphate	%	102	70-130	Pass	
4.4'-DDD	%	104	70-130	Pass	
4.4'-DDE	%	74	70-130	Pass	
4.4'-DDT	%	91	70-130	Pass	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Aldrin			%	104		70-130	Pass	
Dieldrin			%	128		70-130	Pass	
Endosulfan I			%	101		70-130	Pass	
Endosulfan II			%	88		70-130	Pass	
Endrin			%	111		70-130	Pass	
Heptachlor			%	96		70-130	Pass	
Hexachlorobenzene			%	102		70-130	Pass	
Methoxychlor			%	74		70-130	Pass	
LCS - % Recovery								
NEPM 2013 Phenols								
2-Methylphenol (o-Cresol)			%	107		30-130	Pass	
3&4-Methylphenol (m&p-Cresol)			%	124		30-130	Pass	
Pentachlorophenol			%	46		30-130	Pass	
Phenol			%	119		30-130	Pass	
LCS - % Recovery			/0	119		30-130	rass	
Chromium (hexavalent)			%	99		70-130	Pass	
LCS - % Recovery			70	1 99		10-130	F 488	
Heavy Metals				I				
Arsenic			%	100		90.420	Door	
				100		80-120	Pass	
Beryllium			%	109		80-120	Pass	
Cadmium			%	102		80-120	Pass	
Chromium			%	109		80-120	Pass	
Cobalt			%	109		80-120	Pass	
Copper			%	108		80-120	Pass	
Lead			%	109		80-120	Pass	
Manganese			%	107		80-120	Pass	
Mercury			%	95		75-125	Pass	
Nickel			%	102		80-120	Pass	
Selenium			%	106		80-120	Pass	
Zinc	I	1	%	103		80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery				1	1	I		
Total Recoverable Hydrocarbons -	1999 NEPM Fract			Result 1				
TRH C6-C9	M17-Ja17632	NCP	%	93		70-130	Pass	
TRH C10-C14	M17-Ja16118	NCP	%	96		70-130	Pass	
Spike - % Recovery								
BTEX				Result 1				
Benzene	M17-Ja17632	NCP	%	74		70-130	Pass	
Toluene	M17-Ja17632	NCP	%	80		70-130	Pass	
Ethylbenzene	M17-Ja17632	NCP	%	88		70-130	Pass	
m&p-Xylenes	M17-Ja17632	NCP	%	88		70-130	Pass	
o-Xylene	M17-Ja17632	NCP	%	88		70-130	Pass	
Xylenes - Total	M17-Ja17632	NCP	%	88		70-130	Pass	
Spike - % Recovery								
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1				
Naphthalene	M17-Ja17632	NCP	%	124		70-130	Pass	
TRH C6-C10	M17-Ja17632	NCP	%	74		70-130	Pass	
Spike - % Recovery					·			
Total Recoverable Hydrocarbons -	2013 NEPM Fract	ions		Result 1				
TRH >C10-C16	M17-Ja16118	NCP	%	122		70-130	Pass	
Spike - % Recovery	5415116			, ,			. 400	
Heavy Metals				Result 1				
Arsenic	M17-Fe00416	NCP	%	97		75-125	Pass	
Cadmium	M17-Fe00416	NCP		107			Pass	-
Cauilliuiii	WITT-1-600410	INCF	%	107	<u> </u>	75-125	F d 5 5	

Test	Lab Sample ID	QA Source	Units	Result 1	Accepta Limit		Qualifying Code
Chromium	M17-Fe00416	NCP	%	113	75-12		1
Copper	M17-Fe00416	NCP	%	114	75-12		
Lead	M17-Fe00416	NCP	%	111	75-12		
Mercury	M17-Fe00416	NCP	%	101	70-13		
Nickel	M17-Fe00416	NCP	%	107	75-12		
Zinc	M17-Fe00416	NCP	%	105	75-12		+
Spike - % Recovery	1017-1 000-10	1401	70	100	75 12	J 1 433	
Opine - 70 Necovery				Result 1			
Chromium (hovovolent)	M17-Ja17712	СР	%	100	70-13	0 Boso	
Chromium (hexavalent)	WII7-Jai7712	CP	70	100	10-13	0 Pass	_
Spike - % Recovery				Doordt 4			_
Heavy Metals	1 1417 5 00440	NOD	0/	Result 1	75.40		+
Beryllium	M17-Fe00416	NCP	%	111	75-12		+
Cobalt	M17-Fe00416	NCP	%	113	75-12		+
Manganese	M17-Fe00416	NCP	%	107	75-12		
Selenium	M17-Fe00416	NCP	%	103	75-12	5 Pass	
Spike - % Recovery							
Polycyclic Aromatic Hydrocarbor		1		Result 1			
Acenaphthene	M17-Ja17717	CP	%	82	70-13	0 Pass	
Acenaphthylene	M17-Ja17717	CP	%	82	70-13	0 Pass	
Anthracene	M17-Ja17717	CP	%	67	70-13	0 Fail	Q08
Benz(a)anthracene	M17-Ja17717	CP	%	94	70-13	0 Pass	
Benzo(a)pyrene	M17-Ja17717	СР	%	107	70-13	0 Pass	
Benzo(b&j)fluoranthene	M17-Ja17717	СР	%	118	70-13	0 Pass	
Benzo(g.h.i)perylene	M17-Ja17717	СР	%	96	70-13	0 Pass	1
Benzo(k)fluoranthene	M17-Ja17717	CP	%	113	70-13		
Chrysene	M17-Ja17717	CP	%	95	70-13		
Dibenz(a.h)anthracene	M17-Ja17717	CP	%	93	70-13		+
Fluoranthene	M17-Ja17717	CP	%	85	70-13		†
Fluorene	M17-Ja17717	CP	%	80	70-13		+
Indeno(1.2.3-cd)pyrene	M17-Ja17717	CP	%	89	70-13		
	M17-Ja17717 M17-Ja17717	CP	%	82	70-13		+
Naphthalene				1			+
Phenanthrene	M17-Ja17717	CP	%	80	70-13		+
Pyrene	M17-Ja17717	CP	%	89	70-13	0 Pass	_
Spike - % Recovery				T = T			-
NEPM 2013 Phenois	T			Result 1			
2-Methylphenol (o-Cresol)	M17-Ja17717	CP	%	81	30-13		
3&4-Methylphenol (m&p-Cresol)	M17-Ja17717	CP	%	79	30-13		1
Pentachlorophenol	M17-Ja17717	CP	%	60	30-13	0 Pass	
Phenol	M17-Ja17717	CP	%	84	30-13	0 Pass	
Spike - % Recovery							
NEPM 2013 Acid Herbicides				Result 1			
Picloram*	M17-Ja17718	CP	%	98	70-13	0 Pass	
2.4-D	M17-Ja17718	CP	%	122	70-13	0 Pass	
МСРА	M17-Ja17718	СР	%	114	70-13		
МСРВ	M17-Ja17718	СР	%	124	70-13		
Spike - % Recovery				<u>'</u>			
Polychlorinated Biphenyls				Result 1			
Aroclor-1260	M17-Ja17719	СР	%	110	70-13	0 Pass	
Spike - % Recovery		<u> </u>	,,,,	,	, , , , , , ,	- 1.403	
NEPM 2013 Acid Herbicides				Result 1			
Picloram*	M17-Ja17719	СР	%	98	70-13	0 Pass	+
				1 1			
2.4-D	M17-Ja17719	CP	%	122	70-13		+
MCPA	M17-Ja17719	CP	%	114	70-13		
MCPB	M17-Ja17719	CP	%	124	70-13	0 Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								ı	
NEPM 2013 Organochlorine Pest	icides	1		Result 1					
Endosulfan sulphate	M17-Ja17719	CP	%	114			70-130	Pass	
4.4'-DDD	M17-Ja17719	CP	%	128			70-130	Pass	
4.4'-DDE	M17-Ja17719	CP	%	97			70-130	Pass	
4.4'-DDT	M17-Ja17719	CP	%	128			70-130	Pass	
Aldrin	M17-Ja17719	CP	%	101			70-130	Pass	
Dieldrin	M17-Ja17719	CP	%	95			70-130	Pass	
Endosulfan I	M17-Ja17719	CP	%	97			70-130	Pass	
Endosulfan II	M17-Ja17719	CP	%	92			70-130	Pass	
Endrin	M17-Ja17719	CP	%	117			70-130	Pass	
Heptachlor	M17-Ja17719	CP	%	97			70-130	Pass	
Hexachlorobenzene	M17-Ja17719	CP	%	107			70-130	Pass	
Methoxychlor	M17-Ja17719	CP	%	91			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate								,	
Polycyclic Aromatic Hydrocarbo	ns			Result 1	Result 2	RPD			
Acenaphthene	M17-Ja17712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M17-Ja17712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M17-Ja17712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M17-Ja17712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M17-Ja17712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M17-Ja17712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M17-Ja17712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M17-Ja17712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M17-Ja17712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M17-Ja17712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M17-Ja17712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M17-Ja17712	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M17-Ja17712	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M17-Ja17712	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M17-Ja17712	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M17-Ja17712	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Organochlorine Pesticides				Result 1	Result 2	RPD			
Bifenthrin	M17-Ja17712	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Duplicate									
Organophosphorus Pesticides				Result 1	Result 2	RPD			
Chlorpyrifos	M17-Ja17712	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
Duplicate									
Polychlorinated Biphenyls				Result 1	Result 2	RPD			
Aroclor-1016	M17-Ja17712	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1221	M17-Ja17712	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1232	M17-Ja17712	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1242	M17-Ja17712	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1248	M17-Ja17712	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1254	M17-Ja17712	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Aroclor-1260	M17-Ja17712	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Total PCB*	M17-Ja17712	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Duplicate									
Triazines				Result 1	Result 2	RPD			
Atrazine	M17-Ja17712	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	

Duplicate									
NEPM 2013 Acid Herbicides				Result 1	Result 2	RPD			
Picloram*	M17-Ja17519	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4-D	M17-Ja17519	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
2.4.5-T	M17-Ja17519	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
MCPA	M17-Ja17519	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
MCPB	M17-Ja17519	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Mecoprop	M17-Ja17519	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate	1 1017-0417-015	1401	i ilig/kg	<u> </u>	\ 0.0		3070	1 433	
NEPM 2013 Organochlorine Pestic	rides			Result 1	Result 2	RPD			
Endosulfan sulphate	M17-Ja17712	СР	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Mirex	M17-Ja17712	CP	mg/kg	< 0.01	< 0.01	<1	30%	Pass	
4.4'-DDD	M17-Ja17712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDE	M17-Ja17712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
4.4'-DDT	M17-Ja17712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Aldrin	M17-Ja17712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Chlordanes - Total	M17-Ja17712	CP	mg/kg	< 0.03	< 0.03	<1	30%	Pass	
Dieldrin	M17-Ja17712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan I	M17-Ja17712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endosulfan II	M17-Ja17712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Endrin	M17-Ja17712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Heptachlor	M17-Ja17712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Hexachlorobenzene	M17-Ja17712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Methoxychlor	M17-Ja17712	CP	mg/kg	< 0.05	< 0.05	<1	30%	Pass	
Toxaphene	M17-Ja17712	CP	mg/kg	< 1	< 1	<u> </u>	30%	Pass	
Duplicate	WITT-JaT7712	I CF	i iiig/kg	_ < 1		<u> </u>	30 /0	Fass	
NEPM 2013 Phenois				Result 1	Result 2	RPD			
2-Methylphenol (o-Cresol)	M17-Ja17712	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
3&4-Methylphenol (m&p-Cresol)	M17-Ja17712	CP		< 0.2	< 0.2	<u><1</u>	30%	Pass	
Pentachlorophenol	M17-Ja17712	CP	mg/kg	< 1	< 1	<u><1</u>	30%	Pass	
Phenol		CP	mg/kg	< 0.5	< 0.5	<u><1</u>	30%	Pass	
Duplicate	M17-Ja17712	I CF	mg/kg	< 0.5	< 0.5	<1	30%	FdSS	
Duplicate				Booult 1	Booult 2	BBD			
Chromium (hexavalent)	M17-Ja18082	NCP	m a/lea	Result 1	Result 2	RPD	30%	Pass	
Conductivity (1:5 aqueous extract	M17-Ja16062 M17-Ja17712	CP	mg/kg uS/cm	< 1 200	< 1 170	<1 15	30%	Pass	
at 25°C) pH (1:5 Aqueous extract)	B17-Fe01822	+	pH Units		4.5		30%	Pass	
Duplicate	D17-Fe01022	INCF	I pri Onits	4.0	4.5	pass	30 /6	Fass	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M17-Ja17712	СР	mg/kg	< 2	< 2	<1	30%	Pass	
Beryllium	M17-Ja17712	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Boron	M17-Ja16872	NCP	mg/kg	4200	4000	4.0	30%	Pass	
Cadmium	M17-Ja10672	CP	mg/kg	< 0.4	< 0.4	<u>4.0</u> <1	30%	Pass	
Chromium	M17-Ja17712	CP	mg/kg	35	34	2.0	30%	Pass	
Cobalt	M17-Ja17712	CP	mg/kg	43	41	3.0	30%	Pass	
	M17-Ja17712 M17-Ja17712	CP	l .	51	1	2.0	30%	Pass	
Copper Lead	M17-Ja17712 M17-Ja17712	CP	mg/kg mg/kg	< 5	50 < 5	<u> </u>	30%	Pass	
	M17-Ja17712 M17-Ja17712	CP		940	920	2.0	30%	Pass	
Manganese	1	CP	mg/kg		1	<1 <1	30%	Pass	
Mercury Nickel	M17-Ja17712	CP	mg/kg	< 0.1	< 0.1		30%	Pass	
	M17-Ja17712	CP	mg/kg	150	150	3.0			
Selenium	M17-Ja17712	CP	mg/kg	< 2 75	< 2	<1	30%	Pass	
Zinc	M17-Ja17712	I CP	mg/kg	75	77	4.0	30%	Pass	
Dunlicato									
Duplicate				Result 1	Result 2	RPD		+	

Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M17-Ja17713	СР	mg/kg	3.7	3.6	1.0	30%	Pass	
Beryllium	M17-Ja17713	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	M17-Ja17713	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M17-Ja17713	CP	mg/kg	22	22	2.0	30%	Pass	
Cobalt	M17-Ja17713	CP	mg/kg	22	26	18	30%	Pass	
Copper	M17-Ja17713	CP	mg/kg	30	35	15	30%	Pass	
Lead	M17-Ja17713	CP	mg/kg	34	41	19	30%	Pass	
Manganese	M17-Ja17713	CP	mg/kg	430	430	1.0	30%	Pass	
Mercury	M17-Ja17713	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M17-Ja17713	CP	mg/kg	84	100	20	30%	Pass	
Selenium	M17-Ja17713	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Zinc	M17-Ja17713	CP	mg/kg	79	77	3.0	30%	Pass	
Duplicate	WITT-5017715	_ Ci	i ilig/kg	13	7.1	3.0	30 70	1 ass	
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M17-Ja17716	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M17-Ja17716	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M17-Ja17716	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M17-Ja17716	CP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate	WITT-5817710	L CI	Hig/kg		<u> </u>		30 /0	1 ass	
BTEX				Result 1	Result 2	RPD			
Benzene	M17-Ja17716	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M17-Ja17716	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M17-Ja17716	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M17-Ja17716	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
o-Xylene	M17-Ja17716	CP	mg/kg	< 0.2	< 0.1	<1	30%	Pass	
Xylenes - Total	M17-Ja17716	CP	mg/kg	< 0.1	< 0.3	<1	30%	Pass	
Duplicate	WITT-5817710	L CI	i ilig/kg	\ 0.5	V 0.5		30 70	1 ass	
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ione		Result 1	Result 2	RPD			
Naphthalene	M17-Ja17716	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M17-Ja17716	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	10111 00111110	<u> </u>	ı mg/ng	1 20	120	71	0070	1 400	
Polycyclic Aromatic Hydrocarbor				Result 1	Result 2	RPD		T	
Acenaphthene	M17-Ja17716	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M17-Ja17716	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M17-Ja17716	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M17-Ja17716	CP	mg/kg	0.7	0.6	16	30%	Pass	
Benzo(a)pyrene	M17-Ja17716	CP	mg/kg	1.0	0.9	3.0	30%	Pass	
Benzo(b&j)fluoranthene	M17-Ja17716	CP	mg/kg	0.9	0.9	6.0	30%	Pass	
Benzo(g.h.i)perylene	M17-Ja17716	CP	mg/kg	0.7	0.7	7.0	30%	Pass	
Benzo(k)fluoranthene	M17-Ja17716	CP	mg/kg	0.6	0.6	2.0	30%	Pass	
Chrysene	M17-Ja17716	CP	mg/kg	0.8	0.7	11	30%	Pass	
Dibenz(a.h)anthracene	M17-Ja17716	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M17-Ja17716	CP	mg/kg	1.1	1.0	11	30%	Pass	
Fluorene	M17-Ja17716	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M17-Ja17716	CP	mg/kg	0.5	< 0.5	3.0	30%	Pass	
Naphthalene	M17-Ja17716	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M17-Ja17716	CP	mg/kg	0.6	< 0.5	24	30%	Pass	
Pyrene	M17-Ja17716	CP	mg/kg	1.1	1.0	9.0	30%	Pass	
Duplicate			. <u> </u>						
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH >C10-C16	M17-Ja17716	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M17-Ja17716	CP	mg/kg	< 100	< 100	<1	30%	Pass	

Dunlingto									
Duplicate				Dog::lt.4	Result 2	DDD			
NEPM 2013 PhenoIs	M47 1-47740	0.0		Result 1		RPD	000/	D	
2-Methylphenol (o-Cresol)	M17-Ja17716	CP CP	mg/kg	< 0.2	< 0.2	<1 <1	30% 30%	Pass Pass	
3&4-Methylphenol (m&p-Cresol)	M17-Ja17716	CP	mg/kg	< 0.4 < 1	< 0.4 < 1	<1 <1	30%	Pass	
Pentachlorophenol Phenol	M17-Ja17716	CP	mg/kg	t	t t	<1 <1	30%		
	M17-Ja17716	L CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate Total Recoverable Hydrocarbons	1000 NEDM Front	iono		Result 1	Result 2	RPD			
TRH C6-C9	M17-Ja17718	CP	ma/ka	< 20	< 20	<1	30%	Pass	
Duplicate	WII7-Ja17710	L CF	mg/kg	< 20	< 20	<1	30%	Fass	
BTEX				Result 1	Result 2	RPD		1	
Benzene	M17-Ja17718	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M17-Ja17718	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M17-Ja17718	CP		< 0.1	< 0.1	<u> </u>	30%	Pass	
m&p-Xylenes	M17-Ja17718	CP	mg/kg mg/kg	< 0.1	< 0.1	<u> </u>	30%	Pass	
o-Xylene	M17-Ja17718	CP		< 0.2	< 0.2	<u> </u>	30%	Pass	
Xylenes - Total	M17-Ja17718	CP	mg/kg	< 0.1	< 0.1	<u> </u>	30%	Pass	
Duplicate	I WIII-Jaiii 10	L CF	mg/kg	<u> </u>	< 0.3	<u> </u>	3070	Fd55	
Total Recoverable Hydrocarbons	- 2013 NEDM Fract	ione		Result 1	Result 2	RPD			
Naphthalene	M17-Ja17718	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M17-Ja17718	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate	WITT-5017710	L CI	i ilig/kg	\ 20	\ 20		30 /0	1 033	
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M17-Ja17719	СР	mg/kg	11	11	<1	30%	Pass	
Beryllium	M17-Ja17719	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Cadmium	M17-Ja17719	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M17-Ja17719	CP	mg/kg	34	34	<1	30%	Pass	
Cobalt	M17-Ja17719	CP	mg/kg	11	11	<1	30%	Pass	
Copper	M17-Ja17719	CP	mg/kg	26	26	1.0	30%	Pass	
Lead	M17-Ja17719	CP	mg/kg	16	16	<1	30%	Pass	
Manganese	M17-Ja17719	CP	mg/kg	200	190	1.0	30%	Pass	
Mercury	M17-Ja17719	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M17-Ja17719	CP	mg/kg	41	41	<1	30%	Pass	
Selenium	M17-Ja17719	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Zinc	M17-Ja17719	CP	mg/kg	52	53	2.0	30%	Pass	
Duplicate				<u>'</u>	,				
·				Result 1	Result 2	RPD			
% Moisture	M17-Ja17723	СР	%	15	15	2.0	30%	Pass	
Duplicate			•	,	,				
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M17-Ja17723	CP	mg/kg	5.7	5.7	2.0	30%	Pass	
Beryllium	M17-Ja17723	CP	mg/kg	5.5	5.7	5.0	30%	Pass	
Cadmium	M17-Ja17723	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M17-Ja17723	CP	mg/kg	45	45	<1	30%	Pass	
Cobalt	M17-Ja17723	CP	mg/kg	17	18	7.0	30%	Pass	
Copper	M17-Ja17723	CP	mg/kg	28	29	1.0	30%	Pass	
Lead	M17-Ja17723	CP	mg/kg	26	27	3.0	30%	Pass	
Manganese	M17-Ja17723	СР	mg/kg	19	19	3.0	30%	Pass	
Mercury	M17-Ja17723	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Nickel	M17-Ja17723	CP	mg/kg	40	41	2.0	30%	Pass	
Selenium	M17-Ja17723	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Zinc	M17-Ja17723	CP	mg/kg	69	70	1.0	30%	Pass	

Comments

Sample Integrity

N/A
Yes
No

Qualifier Codes/Comments

Code	Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

The matrix spike recovery is outside of the recommended acceptance criteria. An acceptable recovery was obtained for the laboratory control sample indicating a sample matrix interference Q08

Authorised By

N02

Natalie Krasselt Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Alex Petridis Senior Analyst-Organic (VIC) Senior Analyst-Volatile (VIC) Harry Bacalis Huong Le Senior Analyst-Inorganic (VIC) Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Imgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins I mg be liable for consequential claims anges including, but not limited to, lost or ordition, among so included makes indicated otherwises, the tests were sociated as indicated otherwises, the tests were sociated as indicated otherwises, the tests were similar as indicated otherwises.

Cardno Victoria Pty Ltd Level 4, 501 Swanston Street Melbourne VIC 3000

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: David Louwrens

Report532061-WProject nameBOX HILLProject IDV161141GReceived DateJan 30, 2017

Client Sample ID Sample Matrix Eurofins mgt Sample No.			QC03_270117 Water M17-Ja17724	QC04_270117 Water M17-Ja17725
Date Sampled			Jan 27, 2017	Jan 27, 2017
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999	NEPM Fractions			
TRH C6-C9	0.02	mg/L	-	< 0.02
Heavy Metals				
Arsenic	0.001	mg/L	< 0.001	-
Cadmium	0.0002	mg/L	< 0.0002	-
Chromium	0.001	mg/L	< 0.001	-
Copper	0.001	mg/L	< 0.001	-
Lead	0.001	mg/L	< 0.001	-
Nickel	0.001	mg/L	< 0.001	-
Zinc	0.005	mg/L	< 0.005	-

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description Test	sting Site E	Extracted	Holding Time
Eurofins mgt Suite B5			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions Melb	elbourne J	Jan 31, 2017	7 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
Metals M7 Melb	elbourne J	Jan 31, 2017	180 Day

⁻ Method: USEPA 6010/6020 Heavy Metals

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Company Name: Cardno Lane Piper Pty Ltd

Address: Level 4, 501 Swanston Street

Melbourne VIC 3000

Project Name: BOX HILL Project ID: V161141G

Order No.: Received: Jan 30, 2017 10:50 AM

 Report #:
 532061
 Due:
 Feb 6, 2017

 Phone:
 8415 7777
 Priority:
 5 Day

Fax: 8415 7788 Contact Name: David Louwrens

Eurofins | mgt Analytical Services Manager : Natalie Krasselt

	Sample Detail						pH (1:5 Aqueous extract)	TRH C6-C9	Metals M7	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Eurofins mgt Suite B7	Eurofins mgt Suite B5
Melk	elbourne Laboratory - NATA Site # 1254 & 14271					Х	Х	Х	Х	Х	Х	Х	Х	Χ
Sydi	ney Laboratory	- NATA Site # 1	8217											
Bris	bane Laborator	y - NATA Site #	20794											
Pert	h Laboratory - N	NATA Site # 182	17											
Exte	rnal Laboratory	<u>'</u>		1	1									
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									
1	SB01/0.1	Jan 27, 2017		Soil	M17-Ja17709					Х			Х	
2	SB02/0.2	Jan 27, 2017		Soil	M17-Ja17710					Х			Х	
3	SB03/0.1	Jan 27, 2017		Soil	M17-Ja17711					Х			Х	
4	SB04/0.1	Jan 27, 2017		Soil	M17-Ja17712		Х			Х	Х	Х		
5	SB06/0.1	Jan 27, 2017		Soil	M17-Ja17713					Х			Х	
6	SB07/0.1	Jan 27, 2017		Soil	M17-Ja17714					Х			Х	
7	SB08/0.1	Jan 27, 2017		Soil	M17-Ja17715					Х			Х	
8	SB09/0.1	Jan 27, 2017		Soil	M17-Ja17716					Х			Х	
9	SB010/0.1	Jan 27, 2017		Soil	M17-Ja17717					Х			Х	

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

_ ____...

Page 3 of 9

Date Reported:Feb 06, 2017

Fax:

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Company Name: Cardno Lane Piper Pty Ltd

Address: Level 4, 501 Swanston Street

Melbourne VIC 3000

Project Name: BOX HILL Project ID: V161141G

Order No.: Received: Jan 30, 2017 10:50 AM

 Report #:
 532061
 Due:
 Feb 6, 2017

 Phone:
 8415 7777
 Priority:
 5 Day

8415 7788 Contact Name: David Louwrens

Eurofins | mgt Analytical Services Manager : Natalie Krasselt

		Sampl	e Detail		HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M7	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Eurofins mgt Suite B7	Eurofins mgt Suite B5
		ory - NATA Site # 12			Х	Х	Х	Х	Х	Х	Х	Х	Х
		- NATA Site # 1821											Н
		y - NATA Site # 207	94										\vdash
	1	IATA Site # 18217	0-11	N47 1-47740					Х			Х	\vdash
10	SB011/0.3	Jan 27, 2017	Soil	M17-Ja17718		X			X	X	Х	_ ^	\vdash
11	SB012/0.1	Jan 27, 2017	Soil Soil	M17-Ja17719					X			Х	\vdash
12	SB013/0.1 SB014/0.1	Jan 27, 2017 Jan 27, 2017	Soil	M17-Ja17720 M17-Ja17721					X			X	\vdash
14	SB15/0.3	Jan 27, 2017	Soil	M17-Ja17721					X			X	Н
15	QC01_270117	Jan 27, 2017	Soil	M17-Ja17723					X				Х
16	QC03_270117	Jan 27, 2017	Water	M17-Ja17724				Х					
17	QC04 270117	Jan 27, 2017	Water	M17-Ja17725			X						\Box
18	SB01/0.5	Jan 27, 2017	Soil	M17-Ja17726	Х								\Box
19	SB01/0.9	Jan 27, 2017	Soil	M17-Ja17727	Х								
20	SB02/0.5	Jan 27, 2017	Soil	M17-Ja17728	Х								
21	SB02/0.85	Jan 27, 2017	Soil	M17-Ja17729	Х								

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 4 of 9

Date Reported:Feb 06, 2017

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Company Name: Cardno Lane Piper Pty Ltd

Address: Level 4, 501 Swanston Street

Melbourne VIC 3000

Project Name: BOX HILL Project ID: V161141G

Order No.: Received: Jan 30, 2017 10:50 AM

 Report #:
 532061
 Due:
 Feb 6, 2017

 Phone:
 8415 7777
 Priority:
 5 Day

Fax: 8415 7788 Contact Name: David Louwrens

Eurofins | mgt Analytical Services Manager : Natalie Krasselt

		Sample I	Detail		HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M7	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Eurofins mgt Suite B7	Eurofins mgt Suite B5
Mell	bourne Labora	tory - NATA Site # 125	4 & 14271		Х	Х	Х	Х	Х	Х	Х	Х	Х
Syd	ney Laboratory	y - NATA Site # 18217											
Bris	bane Laborato	ory - NATA Site # 20794	ļ										
Pert	h Laboratory -	NATA Site # 18217											
22	SB03/0.35	Jan 27, 2017	Soil	M17-Ja17730	Х								
23	SB03/0.5	Jan 27, 2017	Soil	M17-Ja17731	Х								
24	SB03/0.95	Jan 27, 2017	Soil	M17-Ja17732	Х								
25	SB04/0.5	Jan 27, 2017	Soil	M17-Ja17733	Х								
26	SB04/0.9	Jan 27, 2017	Soil	M17-Ja17734	Х								
27	SB06/0.5	Jan 27, 2017	Soil	M17-Ja17735	Х								
28	SB06/0.9	Jan 27, 2017	Soil	M17-Ja17736	Х								
29	SB07/0.5	Jan 27, 2017	Soil	M17-Ja17737	Х								
30	SB07/0.9	Jan 27, 2017	Soil	M17-Ja17738	Х								
31	SB08/0.5	Jan 27, 2017	Soil	M17-Ja17739	Х								
32	SB09/0.5	Jan 27, 2017	Soil	M17-Ja17740	Х								
33	SB09/0.75	Jan 27, 2017	Soil	M17-Ja17741	Х								

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 5 of 9

Date Reported:Feb 06, 2017

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Phone : +61 7 3902 4600 NATA # 1261 Site # 20794 Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Company Name: Cardno Lane Piper Pty Ltd

Address: Level 4, 501 Swanston Street

Melbourne VIC 3000

Project Name: BOX HILL Project ID: V161141G

Order No.: Received: Jan 30, 2017 10:50 AM

 Report #:
 532061
 Due:
 Feb 6, 2017

 Phone:
 8415 7777
 Priority:
 5 Day

Fax: 8415 7788 Contact Name: David Louwrens

Eurofins | mgt Analytical Services Manager : Natalie Krasselt

Sample Detail					HOLD	pH (1:5 Aqueous extract)	TRH C6-C9	Metals M7	Moisture Set	Cation Exchange Capacity	NEPM Screen Table 1(A) HIL's for Soil Contaminants - Basic Suite - Excluding	Eurofins mgt Suite B7	Eurofins mgt Suite B5
Melk	ourne Laborate	ory - NATA Site #	1254 & 14271		Х	Х	Х	Х	Х	Х	Х	Х	Х
		- NATA Site # 18											
Bris	bane Laborator	y - NATA Site # 2	0794										
	· · · · · · · · · · · · · · · · · · ·	NATA Site # 1821											
34	SB010/0.5	Jan 27, 2017	Soil	M17-Ja17742	Х								
35	SB010/0.9	Jan 27, 2017	Soil	M17-Ja17743	Х								
36	SB011/0.5	Jan 27, 2017	Soil	M17-Ja17744	Х								
37	SB011/1.0	Jan 27, 2017	Soil	M17-Ja17745	Х								
38	SB012/0.5	Jan 27, 2017	Soil	M17-Ja17746	Х								
39	SB012/1.0	Jan 27, 2017	Soil	M17-Ja17747	Х								
40	SB013/0.5	Jan 27, 2017	Soil	M17-Ja17748	Х								
41	SB013/1.0	Jan 27, 2017	Soil	M17-Ja17749	Х								
42	SB015/0.5	Jan 27, 2017	Soil	M17-Ja17750	Х								
43	SB015/1.0	Jan 27, 2017	Soil	M17-Ja17751	Х								
Test	Counts				26	2	1	1	15	2	2	12	1

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166 ABN: 50 005 085 521 Telephone: +61 3 8564 5000

Page 6 of 9

Date Reported:Feb 06, 2017

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres

NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					1			Π	
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions	I						
TRH C6-C9			mg/L	< 0.02			0.02	Pass	
Method Blank				T	1 1			Ι	
Heavy Metals									
Arsenic			mg/L	< 0.001			0.001	Pass	
Cadmium			mg/L	< 0.0002			0.0002	Pass	
Chromium			mg/L	< 0.001			0.001	Pass	
Copper			mg/L	< 0.001			0.001	Pass	
Lead			mg/L	< 0.001			0.001	Pass	
Nickel			mg/L	< 0.001			0.001	Pass	
Zinc			mg/L	< 0.005			0.005	Pass	
LCS - % Recovery									
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions							
TRH C6-C9			%	108			70-130	Pass	
LCS - % Recovery									
Heavy Metals									
Arsenic			%	97			80-120	Pass	
Cadmium			%	96			80-120	Pass	
Chromium			%	97			80-120	Pass	
Copper			%	97			80-120	Pass	
Lead			%	94			80-120	Pass	
Nickel			%	97			80-120	Pass	
Zinc			%	101			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery									
Heavy Metals				Result 1					
Arsenic	M17-Ja17724	СР	%	95			75-125	Pass	
Cadmium	M17-Ja17724	СР	%	96			75-125	Pass	
Chromium	M17-Ja17724	СР	%	96			75-125	Pass	
Copper	M17-Ja17724	СР	%	98			75-125	Pass	
Lead	M17-Ja17724	СР	%	94			75-125	Pass	
Nickel	M17-Ja17724	СР	%	97			75-125	Pass	
Zinc	M17-Ja17724	СР	%	99			75-125	Pass	
Spike - % Recovery		_							
Total Recoverable Hydrocarbons -	1999 NEPM Fract	tions		Result 1					
TRH C6-C9	M17-Ja11769	NCP	%	80			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate	'								
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M17-Ja17724	СР	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Cadmium	M17-Ja17724	CP	mg/L	< 0.0002	< 0.0002	<1	30%	Pass	
Chromium	M17-Ja17724	CP	mg/L	< 0.0002	< 0.001	<1	30%	Pass	
Copper	M17-Ja17724	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Lead	M17-Ja17724	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Nickel	M17-Ja17724	CP	mg/L	< 0.001	< 0.001	<1	30%	Pass	
Zinc	M17-Ja17724	CP	mg/L	< 0.001	< 0.005	<1	30%	Pass	
Duplicate	WIII-Jai11124	_ OF	ı my/L	_ < 0.003	\ 0.000	<u> </u>	30 /6	1 455	
Total Recoverable Hydrocarbons -	1000 NEDM Erost	ione		Pocult 1	Posult 2	RPD			
TRH C6-C9		NCP	ma/l	Result 1	Result 2		300/	Pass	
11/11/00-03	M17-Ja11767	INCP	mg/L	< 0.02	< 0.02	<1	30%	г ass	

Comments

Sample Integrity

Custody Seals Intact (if used)	N/A
Attempt to Chill was evident	Yes
Sample correctly preserved	Yes
Appropriate sample containers have been used	Yes
Sample containers for volatile analysis received with minimal headspace	Yes
Samples received within HoldingTime	Yes
Some samples have been subcontracted	No

Authorised By

Natalie Krasselt Analytical Services Manager
Alex Petridis Senior Analyst-Metal (VIC)
Harry Bacalis Senior Analyst-Volatile (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins, Img shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report, In on case shall Eurofins I mg be liable for consequential claims, but not limited to, lost profits, damages for relative to meet decidines and lost production arising from this report. This document shall be reported used except in full and relates only to the tiens tested. Unless indicated otherwise, the tests were, the test serves, indicated otherwise, the tests were, the test serves in full and relates only to the tiens tested. Unless indicated otherwise, the tests were performed on the samples as received.

Enviro Sample Vic

From: Sarah Gould

Sent: Wednesday, 8 February 2017 12:10 PM

To: Enviro Sample Vic

Subject: FW: Eurofins | mgt Test Results, Invoice - Report 532061 : Site BOX HILL (V161141G)

Attachments: 532061 COC.pdf

Sarah Gould

Phone: +61 3 8564 5053

Email: SarahGould@eurofins.com

From: David Louwrens [mailto:David.Louwrens@cardno.com.au]

Sent: Wednesday, 8 February 2017 12:07 PM

To: Natalie Krasselt Cc: Rachel Heriot

Subject: FW: Eurofins | mgt Test Results, Invoice - Report 532061 : Site BOX HILL (V161141G)

Hi Natalie,

, JA177 28 (H) Can you please test SB02/0.5 for B5 using a 3 day TAT

Regards,

David Louwrens

ASSOCIATE HYDROGEOLOGIST CARDNO - GEOSCIENCES AND ENVIRONMENT

Direct +61 03 9831 6124 Phone +61 3 8415 7777 Fax +61 3 8415 7788 Mobile +61 0438 303 279 Address Level 4, 501 Swanston Street (Cnr. Victoria Street), Melbourne, Victoria 3000 Australia

From: NatalieKrasselt@eurofins.com [mailto:NatalieKrasselt@eurofins.com]

Sent: Monday, 6 February 2017 4:49 PM

To: David Louwrens < David.Louwrens@cardno.com.au>

Cc: Payables LanePiper < Payables. LanePiper@cardno.com.au >; Rachel Heriot < Rachel. Heriot@cardno.com.au >

Subject: Eurofins | mgt Test Results, Invoice - Report 532061 : Site BOX HILL (V161141G)

Hi David & Rachel,

Please find attached report and invoice for BOX HILL (V161141G)

Kind regards

Natalie Krasselt

Analytical Services Manager

Eurofins | mgt

2-5 Kingston Town Close

OAKLEIGH VIC 3166

AUSTRALIA

Phone: +61 385 645 051 Mobile: +61 421 233 772

Email: NatalieKrasselt@eurofins.com Website: environment.eurofins.com.au

Enviro Sample Vic

From:

Sarah Gould

Sent:

Wednesday, 8 February 2017 1:10 PM

To:

Enviro Sample Vic

Subject:

FW: Eurofins | mgt Test Results, Invoice - Report 532061 : Site BOX HILL (V161141G)

Please include with earlier request from this afternoon.

Sarah Gould

Phone: +61 3 8564 5053

Email: SarahGould@eurofins.com

533268

From: David Louwrens [mailto:David.Louwrens@cardno.com.au]

Sent: Wednesday, 8 February 2017 1:07 PM

To: Sarah Gould

Subject: RE: Eurofins | mgt Test Results, Invoice - Report 532061 : Site BOX HILL (V161141G)

Sarah,

As discussed, can you please test the following sample and add to the order below?

Please test SB07/0.5 for PAH on a 3 day TAT.

JA 17737

(H) 05

Thank you and regards, David Louwrens

17/₁

ASSOCIATE HYDROGEOLOGIST

CARDNO - GEOSCIENCES AND ENVIRONMENT

Direct +61 03 9831 6124 Phone +61 3 8415 7777 Fax +61 3 8415 7788 Mobile +61 0438 303 279 Address Level 4, 501 Swanston Street (Cnr. Victoria Street), Melbourne, Victoria 3000 Australia

From: Sarah Gould [mailto:SarahGould@eurofins.com]

Sent: Wednesday, 8 February 2017 12:10 PM

To: David Louwrens < David.Louwrens@cardno.com.au>

Subject: RE: Eurofins | mgt Test Results, Invoice - Report 532061 : Site BOX HILL (V161141G)

Thanks David, will do.

Sarah Gould

Phone: +61 3 8564 5053

Email: SarahGould@eurofins.com

From: David Louwrens [mailto:David.Louwrens@cardno.com.au]

Sent: Wednesday, 8 February 2017 12:07 PM

To: Natalie Krasselt **Cc:** Rachel Heriot

Subject: FW: Eurofins | mgt Test Results, Invoice - Report 532061 : Site BOX HILL (V161141G)

Hi Natalie,

Can you please test SB02/0.5 for B5 using a 3 day TAT?

Regards,

David Louwrens

ASSOCIATE HYDROGEOLOGIST

CARDNO - GEOSCIENCES AND ENVIRONMENT

Direct +61 03 9831 6124 Phone +61 3 8415 7777 Fax +61 3 8415 7788 Mobile +61 0438 303 279

Melbourne Melbourne
3-5 Kingston Town Close
Oakleigh Vic 3166
Phone: +61 3 8564 5000
NATA # 1261
Site # 1254 & 14271

Unit F3, Building F 1/21 Smallwood Place 16 Mars Road Murarrie QLD 4172 Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217

Perth Z/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

ABN - 50 005 085 521

e.mail: EnviroSales@eurofins.com

web: www.eurofins.com.au

Sample Receipt Advice

Company name: Cardno Victoria Pty Ltd

Contact name: **David Louwrens BOX HILL** Project name: Project ID: V161141G COC number: Not provided

Turn around time: 3 Day

Feb 8, 2017 12:10 PM Date/Time received:

Eurofins | mgt reference: 533268

Sample information

- \mathbf{V} A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- \mathbf{V} All samples have been received as described on the above COC.
- \mathbf{V} COC has been completed correctly.
- \mathbf{V} Attempt to chill was evident.
- \mathbf{V} Appropriately preserved sample containers have been used.
- \mathbf{V} All samples were received in good condition.
- \mathbf{V} Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- \mathbf{V} Appropriate sample containers have been used.
- \boxtimes Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Contact notes

If you have any questions with respect to these samples please contact:

Natalie Krasselt on Phone: (+61) (3) 8564 5000 or by e.mail: Natalie Krasselt@eurofins.com

Results will be delivered electronically via e.mail to David Louwrens - david.louwrens@cardno.com.au.

Cardno Victoria Pty Ltd Level 4, 501 Swanston Street Melbourne VIC 3000

Certificate of Analysis

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

Attention: David Louwrens

Report533268-SProject nameBOX HILLProject IDV161141GReceived DateFeb 08, 2017

Client Sample ID			SB02/0.5	SB07/0.5
Sample Matrix			Soil	Soil
Eurofins mgt Sample No.			M17-Fe07391	M17-Fe07422
Date Sampled			Jan 27, 2017	Jan 27, 2017
Test/Reference	LOR	Unit		
Total Recoverable Hydrocarbons - 1999 NEPM I				
TRH C6-C9	20	mg/kg	< 20	-
TRH C10-C14	20	mg/kg	< 20	-
TRH C15-C28	50	mg/kg	< 50	-
TRH C29-C36	50	mg/kg	< 50	-
TRH C10-36 (Total)	50	mg/kg	< 50	-
ВТЕХ				
Benzene	0.1	mg/kg	< 0.1	-
Toluene	0.1	mg/kg	< 0.1	-
Ethylbenzene	0.1	mg/kg	< 0.1	-
m&p-Xylenes	0.2	mg/kg	< 0.2	-
o-Xylene	0.1	mg/kg	< 0.1	-
Xylenes - Total	0.3	mg/kg	< 0.3	-
4-Bromofluorobenzene (surr.)	1	%	102	-
Total Recoverable Hydrocarbons - 2013 NEPM I	Fractions			
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	-
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	-
TRH C6-C10	20	mg/kg	< 20	-
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	-
Polycyclic Aromatic Hydrocarbons				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	-	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	1.2
Acenaphthene	0.5	mg/kg	-	< 0.5
Acenaphthylene	0.5	mg/kg	-	< 0.5
Anthracene	0.5	mg/kg	-	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	< 0.5
Benzo(b&j)fluorantheneN07	0.5	mg/kg	-	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	< 0.5
Chrysene	0.5	mg/kg	-	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	< 0.5
Fluoranthene	0.5	mg/kg	-	< 0.5
Fluorene	0.5	mg/kg	-	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	< 0.5

Client Sample ID Sample Matrix			SB02/0.5 Soil	SB07/0.5 Soil
Eurofins mgt Sample No.			M17-Fe07391	M17-Fe07422
Date Sampled			Jan 27, 2017	Jan 27, 2017
Test/Reference	LOR	Unit		
Polycyclic Aromatic Hydrocarbons				
Naphthalene	0.5	mg/kg	-	< 0.5
Phenanthrene	0.5	mg/kg	-	< 0.5
Pyrene	0.5	mg/kg	-	< 0.5
Total PAH*	0.5	mg/kg	-	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	93
p-Terphenyl-d14 (surr.)	1	%	-	73
Total Recoverable Hydrocarbons - 2013 NEPM Frac	tions			
TRH >C10-C16	50	mg/kg	< 50	-
TRH >C16-C34	100	mg/kg	< 100	-
TRH >C34-C40	100	mg/kg	< 100	-
Heavy Metals				
Arsenic	2	mg/kg	4.7	-
Cadmium	0.4	mg/kg	< 0.4	-
Chromium	5	mg/kg	47	-
Copper	5	mg/kg	35	-
Lead	5	mg/kg	30	-
Nickel	5	mg/kg	44	-
Zinc	5	mg/kg	82	-
% Moisture	1	%	16	16

Sample History

Where samples are submitted/analysed over several days, the last date of extraction and analysis is reported.

A recent review of our LIMS has resulted in the correction or clarification of some method identifications. Due to this, some of the method reference information on reports has changed. However, no substantive change has been made to our laboratory methods, and as such there is no change in the validity of current or previous results (regarding both quality and NATA accreditation).

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Eurofins mgt Suite B5			
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Feb 08, 2017	14 Day
- Method: TRH C6-C36 - LTM-ORG-2010			
BTEX	Melbourne	Feb 08, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Feb 08, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Feb 08, 2017	14 Day
- Method: TRH C6-C40 - LTM-ORG-2010			
Metals M7	Melbourne	Feb 08, 2017	180 Day
- Method: USEPA 6010/6020 Heavy Metals			
Polycyclic Aromatic Hydrocarbons	Melbourne	Feb 08, 2017	14 Day
- Method: USEPA 8270 Polycyclic Aromatic Hydrocarbons			
% Moisture	Melbourne	Feb 08, 2017	14 Day

⁻ Method: LTM-GEN-7080 Moisture

Melbourne 2-5 Kingston Town Close Oakleigh VIC 3166 Phone: +61 3 8564 5000 NATA # 1261 Site # 1254 & 14271 Sydney Unit F3, Building F 16 Mars Road Lane Cove West NSW 2066 Phone: +61 2 9900 8400 NATA # 1261 Site # 18217 **Brisbane** 1/21 Smallwood Place Murarrie QLD 4172 Phone: +61 7 3902 4600 NATA # 1261 Site # 20794

Perth 2/91 Leach Highway Kewdale WA 6105 Phone: +61 8 9251 9600 NATA # 1261 Site # 18217

Company Name: Cardno Victoria Pty Ltd

Address: Level 4, 501 Swanston Street

Melbourne

V161141G

Project Name: BOX HILL

Project ID:

VIC 3000

Order No.: Received: Feb 8, 2017 12:10 PM

 Report #:
 533268
 Due:
 Feb 13, 2017

 Phone:
 8415 7777
 Priority:
 3 Day

Fax: 8415 7788 Contact Name: David Louwrens

Eurofins | mgt Analytical Services Manager : Natalie Krasselt

Sample Detail						Reverse HOLD Charge	Polycyclic Aromatic Hydrocarbons	Moisture Set	Eurofins mgt Suite B5
Melb	ourne Laborato	ory - NATA Site	# 1254 & 142	71		Х	Х	Х	Х
Sydr	ney Laboratory	- NATA Site # 1	8217						
Brisk	oane Laboratory	y - NATA Site #	20794						
Perth	n Laboratory - N	IATA Site # 182	17						
Exte	rnal Laboratory								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID				
1	SB02/0.5	Jan 27, 2017		Soil	M17-Fe07391			Χ	Х
2	SB07/0.5	Jan 27, 2017		Soil	M17-Fe07422	Х	Х	Х	
Test Counts							1	2	1

Eurofins | mgt 2-5 Kingston Town Close, Oakleigh, Victoria, Australia, 3166

ABN : 50 005 085 521 Telephone: +61 3 8564 5000 Report Number: 533268-S

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil results are reported on a dry basis, unless otherwise stated.
- 3. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 4. Results are uncorrected for matrix spikes or surrogate recoveries.
- 5. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 6. Samples were analysed on an 'as received' basis. 7. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the Sample Receipt Advice.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

**NOTE: pH duplicates are reported as a range NOT as RPD

Units

 mg/kg: milligrams per Kilogram
 mg/l: milligrams per litre

 ug/l: micrograms per litre
 ppm: Parts per million

 ppb: Parts per billion
 %: Percentage

org/100ml: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units

MPN/100mL: Most Probable Number of organisms per 100 millilitres

Terms

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

LOR Limit of Reporting.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

LCS Laboratory Control Sample - reported as percent recovery
CRM Certified Reference Material - reported as percent recovery

Method Blank In the case of solid samples these are performed on laboratory certified clean sands

In the case of water samples these are performed on de-ionised water.

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

DuplicateA second piece of analysis from the same sample and reported in the same units as the result to show comparison.

Batch Duplicate A second piece of analysis from a sample outside of the clients batch of samples but run within the laboratory batch of analysis.

Batch SPIKE Spike recovery reported on a sample from outside of the clients batch of samples but run within the laboratory batch of analysis.

USEPA United States Environmental Protection Agency

APHA American Public Health Association

TCLP Toxicity Characteristic Leaching Procedure

COC Chain of Custody
SRA Sample Receipt Advice

CP Client Parent - QC was performed on samples pertaining to this report

NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within

TEQ Toxic Equivalency Quotient

QC - Acceptance Criteria

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR : No Limit

Results between 10-20 times the LOR : RPD must lie between 0-50% $\,$

Results >20 times the LOR : RPD must lie between 0-30%

Surrogate Recoveries: Recoveries must lie between 50-150%-Phenols & PFASs 20-130%

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. Organochlorine Pesticide analysis where reporting LCS data, Toxaphene & Chlordane are not added to the LCS.
- 4. Organochlorine Pesticide analysis where reporting Spike data, Toxaphene is not added to the Spike.
- 5. Total Recoverable Hydrocarbons where reporting Spike & LCS data, a single spike of commercial Hydrocarbon products in the range of C12-C30 is added and it's Total Recovery is reported in the C10-C14 cell of the Report.
- 6. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore laboratory analysis is unlikely to be completed within holding time.

 Analysis will begin as soon as possible after sample receipt.
- 7. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of Recovery the term "INT" appears against that analyte.
- 8. Polychlorinated Biphenyls are spiked only using Aroclor 1260 in Matrix Spikes and LCS.
- 9. For Matrix Spikes and LCS results a dash " -" in the report means that the specific analyte was not added to the QC sample.
- 10. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Total Recoverable Hydrocarbons - 1999 NEPM Fractions					
TRH C6-C9	mg/kg	< 20	20	Pass	
TRH C10-C14	mg/kg	< 20	20	Pass	
TRH C15-C28	mg/kg	< 50	50	Pass	
TRH C29-C36	mg/kg	< 50	50	Pass	
Method Blank					
BTEX	1				
Benzene	mg/kg	< 0.1	0.1	Pass	
Toluene	mg/kg	< 0.1	0.1	Pass	
Ethylbenzene	mg/kg	< 0.1	0.1	Pass	
m&p-Xylenes	mg/kg	< 0.2	0.2	Pass	
o-Xylene	mg/kg	< 0.1	0.1	Pass	
Xylenes - Total	mg/kg	< 0.3	0.3	Pass	
Method Blank					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	mg/kg	< 0.5	0.5	Pass	
TRH C6-C10	mg/kg	< 20	20	Pass	
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank	IIIg/kg	\ \ 0.5	0.5	1 033	
Total Recoverable Hydrocarbons - 2013 NEPM Fractions				T	
TRH >C10-C16	mg/kg	< 50	50	Pass	
TRH >C16-C34	mg/kg	< 100	100	Pass	
TRH >C34-C40	mg/kg	< 100	100	Pass	
	IIIg/kg	<u> </u>	100	Fass	
Method Blank		T T		T	
Heavy Metals	ma/ka	< 2	2	Pass	
Arsenic	mg/kg				
Chromium	mg/kg	< 0.4	0.4	Pass	
Conner	mg/kg	< 5	5	Pass	
Copper	mg/kg	< 5	5	Pass	
Lead	mg/kg	< 5	5	Pass	
Nickel	mg/kg	< 5	5	Pass	
Zinc	mg/kg	< 5	5	Pass	
LCS - % Recovery				_	

Test			Units	Result 1		Acceptance	Pass	Qualifying
						Limits	Limits	Code
TRH C6-C9			%	119		70-130	Pass	
TRH C10-C14			%	75		70-130	Pass	
LCS - % Recovery				T	T T		Г	
BTEX		1						
Benzene			%	110		70-130	Pass	
Toluene			%	107		70-130	Pass	
Ethylbenzene			%	112		70-130	Pass	
m&p-Xylenes			%	111		70-130	Pass	
Xylenes - Total			%	111		70-130	Pass	
LCS - % Recovery				T	T T		T	
Total Recoverable Hydrocarbons	s - 2013 NEPM Fract	ions	1					
Naphthalene			%	107		70-130	Pass	
TRH C6-C10			%	121		70-130	Pass	
LCS - % Recovery								
Polycyclic Aromatic Hydrocarbo	ns							
Acenaphthene			%	82		70-130	Pass	
Acenaphthylene			%	75		70-130	Pass	
Anthracene			%	74		70-130	Pass	
Benz(a)anthracene			%	78		70-130	Pass	
Benzo(a)pyrene			%	77		70-130	Pass	
Benzo(b&j)fluoranthene			%	72		70-130	Pass	
Benzo(g.h.i)perylene			%	76		70-130	Pass	
Benzo(k)fluoranthene			%	78		70-130	Pass	
Chrysene			%	89		70-130	Pass	
Dibenz(a.h)anthracene			%	119		70-130	Pass	
Fluoranthene			%	70		70-130	Pass	
Fluorene			%	81		70-130	Pass	
Indeno(1.2.3-cd)pyrene			%	104		70-130	Pass	
Naphthalene			%	81		70-130	Pass	
Phenanthrene			%	78		70-130	Pass	
Pyrene			%	74		70-130	Pass	
LCS - % Recovery			,,	, , ,		70 100	1 400	
Total Recoverable Hydrocarbons	s - 2013 NFPM Fract	ions						
TRH >C10-C16	3 - 2013 IVLI WITTACE	10113	%	82		70-130	Pass	
LCS - % Recovery			/0	02		70-130	1 033	
Heavy Metals								
			%	06		00.400	Doos	
Arsenic				96		80-120	Pass	
Chromium			% %	93 97		80-120	Pass	
Conner				1		80-120	Pass	
Copper			%	103		80-120	Pass	
Lead			%	100		80-120	Pass	
Nickel			%	98		80-120	Pass	
Zinc			%	100		80-120	Pass	:
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Total Recoverable Hydrocarbons	s - 1999 NEPM Fract	ions		Result 1				
TRH C6-C9	M17-Fe07246	NCP	%	99		70-130	Pass	
TRH C10-C14	M17-Fe05411	NCP	%	97		70-130	Pass	
Spike - % Recovery								
ВТЕХ				Result 1				
Benzene	M17-Fe07246	NCP	%	79		70-130	Pass	
Toluene	M17-Fe07246	NCP	%	89		70-130	Pass	
Ethylbenzene	M17-Fe07246	NCP	%	97		70-130	Pass	
m&p-Xylenes	M17-Fe07246	NCP	%	98		70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
o-Xylene	M17-Fe07246	NCP	%	107			70-130	Pass	
Xvlenes - Total	M17-Fe07246	NCP	%	101			70-130	Pass	
Spike - % Recovery	1		70				70.00	. 455	
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1					
Naphthalene	M17-Fe07246	NCP	%	103			70-130	Pass	
TRH C6-C10	M17-Fe07246	NCP	%	93			70-130	Pass	
Spike - % Recovery			70				70.00	. 455	
Total Recoverable Hydrocarbons	- 2013 NEPM Fract	ions		Result 1					
TRH >C10-C16	M17-Fe05411	NCP	%	109			70-130	Pass	
Spike - % Recovery	1 1117 1 000 111	110.	70	100			70 100	1 400	
Heavy Metals				Result 1					
Arsenic	P17-Fe05893	NCP	%	101			75-125	Pass	
Cadmium	P17-Fe05893	NCP	%	102			75-125	Pass	
Chromium	P17-Fe05893	NCP	%	102			75-125	Pass	
Copper	P17-Fe05893	NCP	%	114			75-125	Pass	
Lead	P17-Fe05893	NCP	%	97			75-125	Pass	
Nickel	P17-Fe05893	NCP	%	96			75-125	Pass	
Zinc	P17-Fe05893	NCP	%	93			75-125		
·	F17-Fe03693	INCF	70	93			75-125	Pass	
Spike - % Recovery	•			Result 1					
Polycyclic Aromatic Hydrocarbon		NCP	%				70.420	Door	
Acenaphthene	M17-Fe07306			104			70-130	Pass	
Actions	M17-Fe07306	NCP	%	101			70-130	Pass	
Anthracene	M17-Fe07306	NCP	%	102			70-130	Pass	
Benz(a)anthracene	M17-Fe07306	NCP	%	99			70-130	Pass	
Benzo(a)pyrene	M17-Fe07306	NCP	%	89			70-130	Pass	
Benzo(b&j)fluoranthene	M17-Fe07306	NCP	%	71			70-130	Pass	
Benzo(g.h.i)perylene	M17-Fe07306	NCP	%	87			70-130	Pass	
Benzo(k)fluoranthene	M17-Fe07306	NCP	%	99			70-130	Pass	
Chrysene	M17-Fe07306	NCP	%	105			70-130	Pass	
Dibenz(a.h)anthracene	M17-Fe07306	NCP	%	129			70-130	Pass	
Fluoranthene	M17-Fe07306	NCP	%	92			70-130	Pass	
Fluorene	M17-Fe07306	NCP	%	104			70-130	Pass	
Indeno(1.2.3-cd)pyrene	M17-Fe07306	NCP	%	117			70-130	Pass	
Naphthalene	M17-Fe07306	NCP	%	100			70-130	Pass	
Phenanthrene	M17-Fe07306	NCP	%	106			70-130	Pass	
Pyrene	M17-Fe07306	NCP	%	94			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Total Recoverable Hydrocarbons	- 1999 NEPM Fract	ions		Result 1	Result 2	RPD			
TRH C6-C9	M17-Fe07391	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C10-C14	M17-Fe07318	NCP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M17-Fe07318	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M17-Fe07318	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
Duplicate	1 1017-1 007-510	1401	mg/kg	\ 00	\ 00		3070	1 433	
BTEX				Result 1	Result 2	RPD			
Benzene	M17-Fe07391	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M17-Fe07391	CP	mg/kg	< 0.1	< 0.1	<1 <1	30%	Pass	
Ethylbenzene	M17-Fe07391	CP	mg/kg	< 0.1	< 0.1	<u><1</u>	30%	Pass	
m&p-Xylenes	M17-Fe07391	CP		< 0.1	< 0.1	<u><1</u>	30%	Pass	
· <i>'</i>		CP CP	mg/kg	1			1		
o-Xylene Yylenes Total	M17-Fe07391	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total	M17-Fe07391	LCP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate Total Bassystable Hydrosorbane	2042 NEDM 5			Dog::lt 4	Door to C	DDD			
Total Recoverable Hydrocarbons			/I	Result 1	Result 2	RPD	200/	D	
Naphthalene TRU C6 C40	M17-Fe07391	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
TRH C6-C10	M17-Fe07391	CP	mg/kg	< 20	< 20	<1	30%	Pass	

Duplicate				ı	1				
Total Recoverable Hydrocarbo	ons - 2013 NEPM Fract	ions	•	Result 1	Result 2	RPD			
TRH >C10-C16	M17-Fe07318	NCP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M17-Fe07318	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M17-Fe07318	NCP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	P17-Fe05893	NCP	mg/kg	2.5	2.9	13	30%	Pass	
Cadmium	P17-Fe05893	NCP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	P17-Fe05893	NCP	mg/kg	50	50	<1	30%	Pass	
Copper	P17-Fe05893	NCP	mg/kg	18	18	1.0	30%	Pass	
Lead	P17-Fe05893	NCP	mg/kg	16	16	1.0	30%	Pass	
Nickel	P17-Fe05893	NCP	mg/kg	16	16	1.0	30%	Pass	
Zinc	P17-Fe05893	NCP	mg/kg	30	32	7.0	30%	Pass	
Duplicate	·								
				Result 1	Result 2	RPD			
% Moisture	M17-Fe07391	СР	%	16	16	<1	30%	Pass	
Duplicate	·								
Polycyclic Aromatic Hydrocar	bons			Result 1	Result 2	RPD			
Acenaphthene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Pyrene	M17-Fe07306	NCP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised By

N02

Natalie Krasselt Analytical Services Manager Alex Petridis Senior Analyst-Metal (VIC) Alex Petridis Senior Analyst-Organic (VIC) Harry Bacalis Senior Analyst-Volatile (VIC) Senior Analyst-Inorganic (VIC) Huona Le Joseph Edouard Senior Analyst-Organic (VIC)

Glenn Jackson

National Operations Manager

Final report - this Report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins | mgt shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins | mgt be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Chain of Custody

PM Name: David Louwrens						ample	Matrix	_	5	Samı	ple	T	Analysis										
Phone: 03 9831 6124 Fax: 03 8415 7788 Mobile:	0438 303 279				-	ampie	Mali	ì	pre	serv	ation						Ana	iysis					
Address: Level 6, 501 Swanston Street, Melbourne, V	ic, 3000																						
PM Email: david.louwrens@cardno.com.au																	ı						
Project Number: V161141G	Site: Box Hill																						
Laboratory (name, phone, & contact person): Al (03) 8549 9600 Carol Walsh	-S								e Bricks			M											
Sample ID	Laboratory ID	Container	Sam Date	pling Time	Soil	Water			lce/ Ice			\$ 2-											ļ
Q102-270117		TAR	27/11/17		Z				×			/											\Box
	:																						
																l	ľ						
															!	Fn	viron	ment	al Di	vieic	n		
																	lbou		Q1 1.71	VISIC	'' '		
										\perp						1	Work (Order I	Refere	ence			
																	EΝ	117	00	85	2		
	•																						
																1		1,7 N#	n alve		11		
																				1			
																			Ш		H		
																			1 1 1	2			
																Telen	hone :	+ 61-3-85	40 080		••		
																ТОГОР	none .	- 01-0-00	H# 21001	J			
																	Т-	T	Γ	[- 1	- 1	
min or electric										Т													
Sampler: I attest that the proper field sampling proceedures we	ere used during the	collection of the	se samples.		,	Samplei R-/	r name: IGR	(prin	t and s	signet	űre)					Date:	ılıl	17					\neg
Relinquished by (Sampler): (print and signature)		Qc.		Bate 301117		Time		Rece	ived by	/ (Cou	urier/Lat	o): (prin	t and s	Date	1.1	,		Time	./)	111	,		
Relinguished by: (print and signature)	******	7-		Date		IO _			7-1 K	} \	15	ianat 4	0)	رم بی Date	/oi/.	201	7	Timo	, 2	٠ %	<u> </u>		
Relinquisned by: (print and signature)				Date		IIIIE		ISA	AC (A	nt and s	7 7	<i>-,</i>		/1/	1-7		line	4:	o			J
Relinquished by: (print and signature)				Date		Time		Recei	ived by	y: (pri	nt and s	ignatur	e)	Date	-	,		Time					\neg

Please supply results electronically in spreadsheet and ESDAT files.

Turn around time: (24 hour/48 hour/3 days/5 days)

Please circle

CERTIFICATE OF ANALYSIS

Work Order : EM1700852

Client : CARDNO VICTORIA PTY LTD

Contact : MR DAVID LOUWRENS

Address : 501 SWANSTON STREET

MELBOURNE VIC, AUSTRALIA 3000

Telephone : +61 03 98880100

Project : V161141G

 Order number
 : ---

 C-O-C number
 : ---

 Sampler
 : RH

 Site
 : Box Hill

Quote number : EN/024/15

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 5

Laboratory : Environmental Division Melbourne

Contact : Graeme Jablonskas

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61-3-8549 9609

Date Samples Received : 30-Jan-2017 14:05

Date Analysis Commenced : 31-Jan-2017

Issue Date : 02-Feb-2017 13:39

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories Position Accreditation Category

Chris Lemaitre Non-Metals Team Leader Melbourne Inorganics, Springvale, VIC

Dilani Fernando Senior Inorganic Chemist Melbourne Inorganics, Springvale, VIC

Nancy Wang Senior Semivolatile Instrument Chemist Melbourne Organics, Springvale, VIC

Nancy Wang Senior Semivolatile Instrument Chemist Melbourne Organics, Springvale, VIC

Xing Lin Senior Organic Chemist Melbourne Organics, Springvale, VIC

Page : 2 of 5 Work Order : EM1700852

Client : CARDNO VICTORIA PTY LTD

Project : V161141G

ALS

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests.
- ~ = Indicates an estimated value.

Page : 3 of 5 Work Order : EM1700852

Client : CARDNO VICTORIA PTY LTD

Project : V161141G

Analytical Results

Page : 4 of 5 Work Order : EM1700852

Client : CARDNO VICTORIA PTY LTD

Project : V161141G

Analytical Results

Page : 5 of 5
Work Order : EM1700852

Client : CARDNO VICTORIA PTY LTD

Project : V161141G

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery Limits (%)				
Compound	CAS Number	Low	High			
EP080S: TPH(V)/BTEX Surrogates						
1.2-Dichloroethane-D4	17060-07-0	51	125			
Toluene-D8	2037-26-5	55	125			
4-Bromofluorobenzene	460-00-4	56	124			

QUALITY CONTROL REPORT

Work Order : EM1700852

Client : CARDNO VICTORIA PTY LTD

Contact : MR DAVID LOUWRENS

Address : 501 SWANSTON STREET

MELBOURNE VIC, AUSTRALIA 3000

Telephone : +61 03 98880100

Project : V161141G

Order number : ----

Sampler : RH

Site : Box Hill

Quote number : EN/024/15

No. of samples received : 1

No. of samples analysed : 1

Page : 1 of 5

Laboratory : Environmental Division Melbourne

Contact : Graeme Jablonskas

Address : 4 Westall Rd Springvale VIC Australia 3171

Telephone : +61-3-8549 9609

Date Samples Received : 30-Jan-2017
Date Analysis Commenced : 31-Jan-2017

Issue Date : 02-Feb-2017

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full. This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

C-O-C number

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Chris Lemaitre	Non-Metals Team Leader	Melbourne Inorganics, Springvale, VIC
Dilani Fernando	Senior Inorganic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	Senior Semivolatile Instrument Chemist	Melbourne Organics, Springvale, VIC
Xing Lin	Senior Organic Chemist	Melbourne Organics, Springvale, VIC

Page : 2 of 5 Work Order : EM1700852

Client : CARDNO VICTORIA PTY LTD

Project : V161141G

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit: Result between 10 and 20 times LOR: 0% - 50%: Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report					
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)
EA055: Moisture Co	ontent (QC Lot: 738877)							
EM1700787-001	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1	%	26.0	24.1	7.23	0% - 20%
EM1700849-003	Anonymous	EA055-103: Moisture Content (dried @ 103°C)		1	%	20.4	21.1	2.93	0% - 20%
EG005T: Total Meta	Is by ICP-AES (QC Lot	: 737626)							
EM1700852-001	QC02_270117	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.00	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	38	40	3.88	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	21	29	32.8	0% - 50%
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	6	0.00	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	19	23	21.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	19	22	11.4	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	42	54	24.3	0% - 50%
EG035T: Total Rec	overable Mercury by Fl	MS (QC Lot: 737625)							
EM1700812-106	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.00	No Limit
EP080/071: Total P	etroleum Hydrocarbons	(QC Lot: 737461)							
EM1700732-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total P	etroleum Hydrocarbons	(QC Lot: 738871)							
EM1700852-001	QC02_270117	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.00	No Limit
		EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit
EP080/071: Total R	ecoverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 737461)							
EM1700732-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.00	No Limit
EP080/071: Total R	ecoverable Hydrocarbo	ns - NEPM 2013 Fractions (QC Lot: 738871)							
EM1700852-001	QC02_270117	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.00	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.00	No Limit

Page : 3 of 5
Work Order : EM1700852

Client : CARDNO VICTORIA PTY LTD

Project : V161141G

Sub-Matrix: SOIL				Laboratory Duplicate (DUP) Report							
Laboratory sample ID	Client sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Recovery Limits (%)		
EP080/071: Total Re	coverable Hydrocarbons - N	EPM 2013 Fractions (QC Lot: 738871) - continued									
EM1700852-001	QC02_270117	EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.00	No Limit		
		EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	0.00	No Limit		
EP080: BTEXN (QC	Lot: 737461)										
EM1700732-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.00	No Limit		
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
			106-42-3								
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.00	No Limit		
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.00	No Limit		

Page : 4 of 5 Work Order : EM1700852

Client : CARDNO VICTORIA PTY LTD

Project : V161141G

Method Blank (MB) and Laboratory Control Spike (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)			S) Report) Report		
				Report	Spike	Spike Recovery (%)	Recovery	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EG005T: Total Metals by ICP-AES (QCLot: 737626)										
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	21.7 mg/kg	88.0	79	113		
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	4.64 mg/kg	103	85	109		
EG005T: Chromium	7440-47-3	2	mg/kg	<2	43.9 mg/kg	96.0	89	113		
EG005T: Copper	7440-50-8	5	mg/kg	<5	32 mg/kg	94.9	84	116		
EG005T: Lead	7439-92-1	5	mg/kg	<5	40 mg/kg	96.0	85	107		
EG005T: Nickel	7440-02-0	2	mg/kg	<2	55 mg/kg	98.2	89	111		
EG005T: Zinc	7440-66-6	5	mg/kg	<5	60.8 mg/kg	97.2	89	111		
EG035T: Total Recoverable Mercury by FIMS (QCLot: 737	625)									
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	2.57 mg/kg	93.8	85	103		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 73746	1)									
EP080: C6 - C9 Fraction		10	mg/kg	<10	36 mg/kg	100	70	127		
EP080/071: Total Petroleum Hydrocarbons (QCLot: 73887	D									
EP071: C10 - C14 Fraction		50	mg/kg	<50	734 mg/kg	107	65	131		
EP071: C15 - C28 Fraction		100	mg/kg	<100	3091 mg/kg	109	70	126		
EP071: C29 - C36 Fraction		100	mg/kg	<100	1507 mg/kg	108	70	122		
EP071: C10 - C36 Fraction (sum)		50	mg/kg	<50						
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QCL	ot: 737461)								
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	45 mg/kg	99.8	68	125		
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013	Fractions (QCL	ot: 738871)								
EP071: >C10 - C16 Fraction		50	mg/kg	<50	1101 mg/kg	107	68	130		
EP071: >C16 - C34 Fraction		100	mg/kg	<100	3914 mg/kg	108	72	116		
EP071: >C34 - C40 Fraction		100	mg/kg	<100	283 mg/kg	109	38	132		
EP071: >C10 - C40 Fraction (sum)		50	mg/kg	<50						
EP080: BTEXN (QCLot: 737461)										
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	100	74	124		
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	96.8	77	125		
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	98.6	73	125		
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	4 mg/kg	105	77	128		
	106-42-3									
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2 mg/kg	108	81	128		
EP080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	95.2	66	130		

Page : 5 of 5 Work Order : EM1700852

Client : CARDNO VICTORIA PTY LTD

Project : V161141G

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

ub-Matrix: SOIL				M	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Recovery L	Limits (%)
aboratory sample ID	Client sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
G005T: Total Me	tals by ICP-AES (QCLot: 737626)						
EM1700861-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	102	78	124
		EG005T: Cadmium	7440-43-9	50 mg/kg	109	84	116
		EG005T: Chromium	7440-47-3	50 mg/kg	101	79	121
		EG005T: Copper	7440-50-8	50 mg/kg	110	82	124
		EG005T: Lead	7439-92-1	50 mg/kg	99.1	76	124
		EG005T: Nickel	7440-02-0	50 mg/kg	106	78	120
		EG005T: Zinc	7440-66-6	50 mg/kg	106	74	128
G035T: Total Re	ecoverable Mercury by FIMS (QCLot: 737625						
EM1700861-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	95.4	76	116
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 737461)						
EM1700732-016	Anonymous	EP080: C6 - C9 Fraction		28 mg/kg	88.8	42	131
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 738871)						
EM1700891-001	Anonymous	EP071: C10 - C14 Fraction		734 mg/kg	100	53	123
		EP071: C15 - C28 Fraction		3091 mg/kg	88.6	70	124
		EP071: C29 - C36 Fraction		1507 mg/kg	# Not	64	118
					Determined		
P080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Frac	ctions (QCLot: 737461)					
EM1700732-016	Anonymous	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	88.4	39	129
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Frac	ctions (QCLot: 738871)					
EM1700891-001	Anonymous	EP071: >C10 - C16 Fraction		1101 mg/kg	94.2	65	123
		EP071: >C16 - C34 Fraction		3914 mg/kg	93.1	67	121
		EP071: >C34 - C40 Fraction		283 mg/kg	# Not	44	126
					Determined		
EP080: BTEXN (Q	QCLot: 737461)						
EM1700732-016	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	104	50	136
		EP080: Toluene	108-88-3	2 mg/kg	100	56	139

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM1700852** Page : 1 of 5

Client : CARDNO VICTORIA PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : MR DAVID LOUWRENS
 Telephone
 : +61-3-8549 9609

 Project
 : V161141G
 Date Samples Received
 : 30-Jan-2017

 Site
 : Box Hill
 Issue Date
 : 02-Feb-2017

Sampler : RH No. of samples received : 1
Order number : ---- No. of samples analysed : 1

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- Matrix Spike outliers exist please see following pages for full details.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• NO Analysis Holding Time Outliers exist.

Outliers: Frequency of Quality Control Samples

NO Quality Control Sample Frequency Outliers exist.

Page : 2 of 5 Work Order : EM1700852

Client : CARDNO VICTORIA PTY LTD

Project : V161141G

Outliers: Quality Control Samples

Duplicates, Method Blanks, Laboratory Control Samples and Matrix Spikes

Matrix: SOIL

Compound Group Name	Laboratory Sample ID	Client Sample ID	Analyte	CAS Number	Data	Limits	Comment
Matrix Spike (MS) Recoveries							
EP080/071: Total Petroleum Hydrocarbons	EM1700891001	Anonymous	C29 - C36 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.
EP080/071: Total Recoverable Hydrocarbons - NEPM 2	EM1700891001	Anonymous	>C34 - C40 Fraction		Not		MS recovery not determined,
					Determined		background level greater than or
							equal to 4x spike level.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: **SOIL**Evaluation: ▼ = Holding time breach; ✓ = Within holding time.

Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content							
Soil Glass Jar - Unpreserved (EA055-103) QC02_270117	27-Jan-2017				01-Feb-2017	10-Feb-2017	✓
EG005T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) QC02_270117	27-Jan-2017	01-Feb-2017	26-Jul-2017	✓	01-Feb-2017	26-Jul-2017	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T) QC02_270117	27-Jan-2017	01-Feb-2017	24-Feb-2017	1	01-Feb-2017	24-Feb-2017	✓
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP071) QC02_270117	27-Jan-2017	01-Feb-2017	10-Feb-2017	1	01-Feb-2017	13-Mar-2017	√
Soil Glass Jar - Unpreserved (EP080) QC02_270117	27-Jan-2017	31-Jan-2017	10-Feb-2017	1	01-Feb-2017	10-Feb-2017	√
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Soil Glass Jar - Unpreserved (EP071) QC02_270117	27-Jan-2017	01-Feb-2017	10-Feb-2017	✓	01-Feb-2017	13-Mar-2017	✓
Soil Glass Jar - Unpreserved (EP080) QC02_270117	27-Jan-2017	31-Jan-2017	10-Feb-2017	1	01-Feb-2017	10-Feb-2017	✓

Page : 3 of 5
Work Order : EM1700852

Client : CARDNO VICTORIA PTY LTD

Project : V161141G

Matrix: SOIL				Evaluation	: x = Holding time	breach ; ✓ = Withi	n holding time.
Method	Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080) QC02_270117	27-Jan-2017	31-Jan-2017	10-Feb-2017	✓	01-Feb-2017	10-Feb-2017	✓

Page : 4 of 5 Work Order EM1700852

Client CARDNO VICTORIA PTY LTD

V161141G Project

TRH Volatiles/BTEX

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

EP080

1

10

10.00

Motrix	" COII		

Matrix: SOIL Evaluation: ★ = Quality Control frequency not within specification; ✓ = Quality Control frequency within specification.								
Quality Control Sample Type		Count		Rate (%)			Quality Control Specification	
Analytical Methods	Method	oc	Reaular	Actual	Expected	Evaluation		
Laboratory Duplicates (DUP)								
Moisture Content	EA055-103	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Mercury by FIMS	EG035T	1	8	12.50	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-AES	EG005T	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071	1	2	50.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX	EP080	1	10	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard	
Laboratory Control Samples (LCS)								
Total Mercury by FIMS	EG035T	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-AES	EG005T	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX	EP080	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Method Blanks (MB)								
Total Mercury by FIMS	EG035T	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-AES	EG005T	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH Volatiles/BTEX	EP080	1	10	10.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Matrix Spikes (MS)								
Total Mercury by FIMS	EG035T	1	8	12.50	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
Total Metals by ICP-AES	EG005T	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	
TRH - Semivolatile Fraction	EP071	1	2	50.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard	

5.00

NEPM 2013 B3 & ALS QC Standard

Page : 5 of 5 Work Order : EM1700852

Client : CARDNO VICTORIA PTY LTD

Project : V161141G

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055-103	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 103-105 degrees C. This method is compliant with NEPM (2013) Schedule B(3) Section 7.1 and Table 1 (14 day holding time).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM (2013) Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM (2013) Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015A Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40.
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260B Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM (2013) Schedule B(3) (Method 202)
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.

Data Quality Validation Report

This report reviews the Quality Assurance (QA) and Quality Control (QC) documentation. Quality assurance encompasses the actions, procedures, checks and decisions undertaken to ensure sample integrity and representativeness, and the reliability and accuracy of analysis results. The QA documentation should also include an indication of the Data Quality Objectives sought in relation to each significant action, test or process involved in the assessment.

QC activities measure the effectiveness of the QA procedures by undertaking testing, and then comparing results to previously established objectives. QC work will include the internal laboratory testing, as well as results of QC samples such as trip blanks and duplicates. The quality of the information and/or data is deemed satisfactory when the QC results demonstrate that agreed objectives have been met.

A review of the QA/QC was completed as part of the data validation exercise. The findings are summarised in the table below.

QA/QC Aspects	Evidence & Evaluation						
	QA Documentation						
	A Workplan and Health & Safety Plan were prepared prior to the soil contamination assessment.						
Project Quality Plan/Work Plan and Data Quality	The investigation was carried out in accordance with the proposed scope of work outlined in the report.						
Objectives	A quality control program was implemented during the investigation and the quality assurance procedures used have been reiterated in the report.						
	The Data Quality Objectives were expressed in terms of the purpose of the assessment and the relevant assessment criteria.						
Data Validation Report	This review constitutes a data validation review.						
	Data Representativeness						
Holding Times	Soil: Chain of custody and laboratory reports provide evidence of holding times. Holding times were in conformance with Appendix B in EPA Publication IWRG701 'Sampling and Analysis of Waters, Wastewaters, Soils and Wastes (June 2009).						
Verification of field procedures	The methodology conducted during the assessment is documented in the body of the report, and was generally in conformance with the work plan. Non-disposable equipment was decontaminated between soil and groundwater applies using phosphoto free detergent (Decon 20) solution, followed by ringing						
	samples using phosphate free detergent (Decon 90) solution, followed by rinsing with DI water.						
	Data Precision & Accuracy						
	Soil						
	Acceptance Criteria: RPD < 30%						
	Soil Samples Analysed: 14						
QC Testing –	Blind Duplicate Samples Analysed: 1						
Blind Duplicate	Blind Duplicate Analyte Pairs: 26						
(Primary Laboratory)	Number of Analyte Pairs Exceeding Criteria: 0						
	Percentage of Analyte Pairs Exceeding Criteria: 0%						
	There are no RPD exceedances for any of the analyte pairs. RPD calculations are presented in Appendix B of the assessment report.						
QC Testing –	Soil						
Split Duplicate • Acceptance Criteria: RPD < 30%							
(Secondary Laboratory)	Soil Samples Analysed: 14						
	Split Duplicate Samples Analysed: 1						

Appendix E Page 1

QA/QC Aspects	Evidence & Evaluation
	 Split Duplicate Analyte Pairs: 25 Number of Analyte Pairs Exceeding Criteria: 4 Percentage of Analyte Pairs Exceeding Criteria: 16% The RPD exceedances include Copper (RPD of 59%), Lead (RPD of 45%), Nickel (RPD of 71%) and Zinc (RPD of 65%). The exceedances may be related to sample heterogeneity or differently analysis methods used at the primary and secondary laboratories, and for the most part are not excessively high. RPD calculations are presented in Appendix B of the report.
Trip Blanks	One trip blank was collected and laboratory tested. The sample was tested for TPH C_6 - C_9 , which reported a concentration below the laboratory limit of reporting (LOR), as shown in Table B-3, Appendix B.
Laboratory Internal QC	Evidence of the primary laboratory's internal QC testing is present and complete in the laboratory report. Eurofins-mgt performed internal QC with adequate testing and satisfactory results for matrix spikes, method blanks, and laboratory control samples. One sample tested for anthracene reported a matrix spike recovery of 67% which is outside the recommended acceptance criteria of 70-130%. Eurofins-mgt noted that an acceptable recovery was obtained for the laboratory control sample, indicating a sample matrix interference. All other analytes reported "passes" in the internal tests, recording results within the adopted acceptance criteria.
Laboratory Method Detection Limit	Laboratory reports indicate that the method detection limits were lower than the respective assessment criteria. The analysed samples did not report any analyte concentrations above the LORs.
NATA endorsement of laboratory reports	Laboratory reports were stamped with the NATA endorsement stamp and signature.
Decontamination and Equipment Blanks	One rinsate blank sample was collected and laboratory tested for metals. All analytes reported concentrations below the laboratory LOR, as shown in Table B-3, Appendix B.
	Data Comparability
Standard Procedures	Field methods such as sampling, storage, handling and decontamination were undertaken in compliance with Cardno's standard operating procedures (SOPs) and were consistent by the sampler. These SOPs are in general accordance with applicable standards and guidelines and industry best practice, which are detailed in the report. Laboratory methods used in this assessment were consistent over the duration of the assessment.
Qualified Personnel	Staff members involved in managing and reviewing the project are confirmed as suitably qualified, trained and experienced personnel.
Volatile Losses	There is no evidence of volatile losses based on the trip blank results. PID screening undertaken during the soil sampling program recorded generally low readings that do not indicate significant contamination by volatiles.
Sample Integrity	Chain of Custody forms (laboratory request) are presented in Appendix E of the report.
	Data Completeness
Completeness of test program	The scope of work undertaken was generally consistent with that required to characterise the site, as set out in the proposed scope of works.
Validity of Data Set	The data quality review does not indicate any significant systematic errors in the data collection process for soil, and therefore the dataset used as the basis for this assessment is considered valid and complete.

Appendix E Page 2

853 Whitehorse Road, Box Hill, 3128

CS00419

Report Date: 22/10/2016 © Spatial Vision 2012-16 Spatial Vision does not guarantee the accuracy of the information embodied in this report. To view full terms and conditions visit:

This report has been produced for the subject site:

853 Whitehorse Road, Box Hill, 3128

What is CheckSite?

Gathering information about a particular site to understand its history of use can be a time consuming and frustrating task. As a professional environmental auditor, developer or property consultant, you need access to a variety of information from reliable sources to assess whether the site may be associated with a risk or hazard.

Name

CheckSite draws on information from a wide range of government agencies and authoritative sources to generate reports about a property. CheckSite provides you with complete, professional reports compiled from the best current information, freeing up your resources. All you have to do is provide an address or property description (Lot on Plan), CheckSite will do the rest!

Standard CheckSite reports not what you are looking for? Please contact Spatial Vision with your needs – we would be happy to provide an estimate of a custom solution.

CheckSite reports are produced by: Spatial Vision Innovations Pty Ltd Level 4, 575 Bourke Street Melbourne VIC 3000 Contact: ph +61 3 9691 3000 or info@checksite.com.au www.checksite.com.au

CS00419

The following searches have been undertaken for this report.

CONTENT	SOURCES	SEARCH UNDERTAKEN	INFO. PROVIDED	DETAILS
Melway	AUSWAY Publishing	♥ Yes♥ No	YesNo	Melway Ed1 1966 provided Melway Ed11 1978 provided
Historic Aerial Images	Department of Environment, Land, Water & Planning	• Yes • No	• Yes	Aerial Imagery from 1931, 1954, 1970, 1972, 1987, 1991, 2005 and 2010
Parish Plans	Public Records Office Victoria	⊙ Yes⊙ No	• Yes	Refer to map
Historic Planning Schemes	Planning Maps Online	© Yes	• Yes	1954, 1959, 1968 Historic Planning Schemes Area missing from 1985
MMBW Detail Plan	State Library of Victoria	✓ Yes✓ No	• Yes	MMBW Plan provided - refer to map

Terms and Conditions

All information contained on this report is subject to copyright and also contain trade marks which are property of the owners. Any reproduction, duplication, copying, sale or resale or exploitation for commercial purposes of any information in this report is expressly prohibited nor may any trade marks be removed, obscured or altered in any way.

Spatial Vision has no responsibility for delay, failure to supply, corruption or deletion of files or misdelivery of any information appearing on the CheckSite report which is beyond the reasonable control of Spatial Vision.

Spatial Vision does not control the content provided in this report and does not guarantee the accuracy of such information embodied in the content. So far as permitted by law, Spatial Vision excludes liability for any direct, indirect, special or consequential loss (including, but not limited to, loss of profit) caused from the use of such information.

The CheckSite report is accessed at your sole risk and the service is provided on an 'as is' and 'as available' basis. Any information downloaded is entirely at the customer's risk and the customer will be solely responsible for any damage to their computer arising from accessing the site or downloading any information. You must check for and maintain your own protection against computer viruses.

To view Spatial Vision's CheckSite Terms and Conditions, visit our website.

CS00419

Melway Edition 1 - 1966

Map Number: 47

Melway Edition 11 - 1978

Map Number: 47

Image Date: November 1931

Scale of Original Photograph: 1:18,860

Photo ID: p1931r19y11_1931film60fr3124_photoid1703495_serial03414_dpi1000.jp2

Image Date: March 1954

Scale of Original Photograph: 1:20,000

Photo ID: p159r2y03_1954film1257fr2157_photoid1672092_serial07975_dpi1000.jp2

Image Date: February 1970

Scale of Original Photograph: 1:30,000

Photo ID: 2383_222_09_16um_24021970.jp2

Image Date: March 1972

Scale of Original Photograph: 1:7,200

Photo ID: p982r1y03_1972film2549fr4_photoid2095454_serial01560_dpi1000.jp2

Image Date: December 1987

Scale of Original Photograph: 1:10,000

Photo ID: 4132_129_005_15um_12121987.jp2

Image Date: September 1991

Scale of Original Photograph: 1:15,000

Photo ID: p2072r17y09_1991film4418fr153_photoid1722197_serial05391_dpi1000.jp2

Image Date: December 2005

Scale of Original Photograph: 35cm resolution

Photo ID: portphillip_2005dec11_air_vis_35cm_mga55.ecw

Image Date: December 2010

Scale of Original Photograph: 35cm resolution

Photo ID: portphillip_2010dec28_air_vis_35cm_mga55.ecw

Parish Plan

Parish: Nunawading

Section:

Allotment: Part of 4

Historical Planning Schemes

1954

1959

© State of Victoria

Historical Planning Schemes

1968

1985

HISTORIC PLANNING SCHEMES LEGENDS

Melbourne Metropolitan Board of Works Plan

Image Date: 1928

Plan Number: 3083

What is CheckSite?

Gathering information about a particular site to understand its history of use can be a time consuming and frustrating task. As a professional environmental auditor, developer or property consultant, you need access to a variety of information from reliable sources to assess whether the site may be associated with a risk or hazard.

CheckSite draws on information from a wide range of government agencies and authoritative sources to generate reports about a property. CheckSite provides you with complete, professional reports compiled from the best current information, freeing up your resources. All you have to do is provide an address or property description (Lot on Plan), CheckSite will do the rest!

Standard CheckSite reports not what you are looking for? Please contact Spatial Vision with your needs – we would be happy to provide an estimate of a custom solution.

CheckSite reports are produced by:

Spatial Vision Innovations Pty Ltd

Level 4, 575 Bourke Street Melbourne VIC 3000

Contact: ph +61 3 9691 3000 or info@checksite.com.au

www.checksite.com.au

CS00419